This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Experimental autoimmune encephalomyelitis in the neotropical primate common marmoset (Callithrix jacchus) is a relevant autoimmune animal model of multiple sclerosis. T cells specific for peptide 34 to 56 of myelin/oligodendrocyte glycoprotein (MOG34-56) have a central pathogenic role in this model. The aim of this study was to assess the requirement for innate immune stimulation for activation of this core pathogenic autoimmune mechanism. Marmoset monkeys were sensitized against synthetic MOG34-56 peptide alone or in combination with the nonencephalitogenic peptide MOG74-96 formulated in incomplete Freund adjuvant, which lacks microbial components. Experimental autoimmune encephalomyelitis development was recorded by monitoring neurological signs, brain magnetic resonance imaging, and longitudinal profiling of cellular and humoral immune parameters. All monkeys developed autoimmune inflammatory/demyelinating central nervous system disease characterized by massive brain and spinal cord demyelinating white matter lesions with activated macrophages and CD3+ T cells. Immune profiling ex vivo demonstrated the activation of mainly CD3+CD4+/8+CD56+ T cells against MOG34-56. Upon ex vivo stimulation, these T cells produced more interleukin 17A compared with TH1 cytokines (e.g. interferon-gamma) and displayed peptide-specific cytolytic activity. These results indicate that the full spectrum of marmoset experimental autoimmune encephalomyelitis can be induced by sensitization against a single MOG peptide in incomplete Freund adjuvant lacking microbial compounds for innate immune activation and by eliciting antigen-specific T-cell cytolytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.