SummaryRadiotherapy-despite being a local therapy that meanwhile is characterized by an impressively high degree of spatial accuracy-can stimulate systemic phenomena which occasionally lead to regression and rejection of non-irradiated, distant tumor lesions. These abscopal effects of local irradiation have been observed in sporadic clinical case reports since the beginning of the 20th century, and extensive preclinical work has contributed to identify systemic anti-tumor immune responses as the underlying driving forces. Although abscopal tumor regression still remains a rare event in the radiotherapeutic routine, increasing numbers of cases are being reported, particularly since the clinical implementation of immune checkpoint inhibiting agents. Accordingly, interests to systematically exploit the therapeutic potential of radiotherapy-stimulated systemic responses are constantly growing. The present review briefly delineates the history of radiotherapy-induced abscopal effects and the activation of systemic anti-tumor immune responses by local irradiation. We discuss preclinical and clinical reports with specific focus on the corresponding controversies, and we propose issues that should be addressed in the future in order to narrow the gap between preclinical knowledge and clinical experiences. K E Y W O R D Sabscopal effect, anti-tumor immunity, immunogenic cell death, radiotherapy | INTRODUCTIONTogether with surgery and chemotherapy, radiotherapy (RT) plays a central role in oncological treatment regimens. More than 60% of all cancer patients receive RT at one point during their medical attendance. 1 Traditionally, the efficacy of RT has been exclusively credited to its ability to induce cancer cell death and the notion that tumors are more prone to damage induced by ionizing radiation (IR) than non-malignant, normal tissues. According to the concept of the four R's of radiotherapy, repair (of IR-induced damage), reoxygenation, redistribution (to other cell cycle phases), and regeneration are the major determinants of a tissue's response toward IR.2 Importantly, tumors and non-malignant tissues are considered to differ in these characteristics, thus forming the rationale for the use of fractionated irradiation regimens with daily fractions over a period of 3-6 weeks in the clinical routine.It needs to be stressed that in the majority of all cases RT is applied in local settings with a high degree of spatial precision and the cardinal aim to achieve locoregional tumor control. However, there is accumulating evidence that-although applied locally-RT can induce systemic anti-tumor responses leading to regression and rejection of non-irradiated, distant tumor lesions. Collectively, these observations have been summarized under the term 'abscopal effects of RT', and meanwhile it is well accepted that immune mechanisms are the underlying driving forces. For distinct chemotherapeutics, the induction of such systemic, immune-mediated effects has been extensively analyzed by the groups of G. Kroemer and L. ZitvogeI....
The major goal of radiotherapy is the induction of tumor cell death. Additionally, radiotherapy can function as in situ cancer vaccination by exposing tumor antigens and providing adjuvants for anti-tumor immune priming. In this regard, the mode of tumor cell death and the repertoire of released damage-associated molecular patterns (DAMPs) are crucial. However, optimal dosing and fractionation of radiotherapy remain controversial. Here, we examined the initial steps of anti-tumor immune priming by different radiation regimens (20 Gy, 4 × 2 Gy, 2 Gy, 0 Gy) with cell lines of triple-negative breast cancer in vitro and in vivo. Previously, we have shown that especially high single doses (20 Gy) induce a delayed type of primary necrosis with characteristics of mitotic catastrophe and plasma membrane disintegration. Now, we provide evidence that protein DAMPs released by these dying cells stimulate sequential recruitment of neutrophils and monocytes in vivo. Key players in this regard appear to be endothelial cells revealing a distinct state of activation upon exposure to supernatants of irradiated tumor cells as characterized by high surface expression of adhesion molecules and production of a discrete cytokine/chemokine pattern. Furthermore, irradiated tumor cell-derived protein DAMPs enforced differentiation and maturation of dendritic cells as hallmarked by upregulation of co-stimulatory molecules and improved T cell-priming. Consistently, a recurring pattern was observed: The strongest effects were detected with 20 Gy-irradiated cells. Obviously, the initial steps of radiotherapy-induced anti-tumor immune priming are preferentially triggered by high single doses – at least in models of triple-negative breast cancer.
No abstract
BackgroundRadiotherapy, administered in fractionated as well as ablative settings, is an essential treatment component for breast cancer. Besides the direct tumor cell death inducing effects, there is growing evidence that immune mechanisms contribute - at least in part - to its therapeutic success. The present study was designed to characterize the type and the extent of cell death induced by fractionated and ablative radiotherapy as well as its impact on the release of monocyte migration stimulating factors by dying breast cancer cells.MethodsCell death and senescence assays were employed to characterize the response of a panel of breast cancer cell lines with different receptor and p53 status towards γ-irradiation applied in a fractionated (daily doses of 2 Gy) or ablative setting (single dose of 20 Gy). Cell-free culture supernatants were examined for their monocyte migration stimulating potential in transwell migration and 2D chemotaxis/chemokinesis assays. Irradiation-induced transcriptional responses were analyzed by qRT-PCR, and CD39 surface expression was measured by flow cytometry.ResultsFast proliferating, hormone receptor negative breast cancer cell lines with defective p53 predominantly underwent primary necrosis in response to γ-irradiation when applied at a single, ablative dose of 20 Gy, whereas hormone receptor positive, p53 wildtype cells revealed a combination of apoptosis, primary, and secondary (post-apoptotic) necrosis. During necrosis the dying tumor cells released apyrase-sensitive nucleotides, which effectively stimulated monocyte migration and chemokinesis. In hormone receptor positive cells with functional p53 this was hampered by irradiation-induced surface expression of the ectonucleotidase CD39.ConclusionsOur study shows that ablative radiotherapy potently induces necrosis in fast proliferating, hormone receptor negative breast cancer cell lines with mutant p53, which in turn release monocyte migration and chemokinesis stimulating nucleotides. Future studies have to elucidate, whether these mechanisms might be utilized in order to stimulate intra-tumoral monocyte recruitment and subsequent priming of adaptive anti-tumor immune responses, and which breast cancer subtypes might be best suited for such approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.