We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Re τ = 180 as well as 590.
We present a robust and accurate discretization approach for incompressible turbulent flows based on highorder discontinuous Galerkin methods. The DG discretization of the incompressible Navier-Stokes equations uses the local Lax-Friedrichs flux for the convective term, the symmetric interior penalty method for the viscous term, and central fluxes for the velocity-pressure coupling terms. Stability of the discretization approach for under-resolved, turbulent flow problems is realized by a purely numerical stabilization approach. Consistent penalty terms that enforce the incompressibility constraint as well as inter-element continuity of the velocity field in a weak sense render the numerical method a robust discretization scheme in the under-resolved regime. The penalty parameters are derived by means of dimensional analysis using penalty factors of order 1. Applying these penalty terms in a postprocessing step leads to an efficient solution algorithm for turbulent flows. The proposed approach is applicable independently of the solution strategy used to solve the incompressible Navier-Stokes equations, i.e., it can be used for both projection-type solution methods as well as monolithic solution approaches. Since our approach is based on consistent penalty terms, it is by definition generic and provides optimal rates of convergence when applied to laminar flow problems. Robustness and accuracy are verified for the Orr-Sommerfeld stability problem, the Taylor-Green vortex problem, and turbulent channel flow. Moreover, the accuracy of high-order discretizations as compared to low-order discretizations is investigated for these flow problems. A comparison to state-ofthe-art computational approaches for large-eddy simulation indicates that the proposed methods are highly attractive components for turbulent flow solvers.
The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for coarse spatial resolutions and small time step sizes. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.
Summary The present paper addresses the numerical solution of turbulent flows with high‐order discontinuous Galerkin methods for discretizing the incompressible Navier‐Stokes equations. The efficiency of high‐order methods when applied to under‐resolved problems is an open issue in the literature. This topic is carefully investigated in the present work by the example of the three‐dimensional Taylor‐Green vortex problem. Our implementation is based on a generic high‐performance framework for matrix‐free evaluation of finite element operators with one of the best realizations currently known. We present a methodology to systematically analyze the efficiency of the incompressible Navier‐Stokes solver for high polynomial degrees. Due to the absence of optimal rates of convergence in the under‐resolved regime, our results reveal that demonstrating improved efficiency of high‐order methods is a challenging task and that optimal computational complexity of solvers and preconditioners as well as matrix‐free implementations are necessary ingredients in achieving the goal of better solution quality at the same computational costs already for a geometrically simple problem such as the Taylor‐Green vortex. Although the analysis is performed for a Cartesian geometry, our approach is generic and can be applied to arbitrary geometries. We present excellent performance numbers on modern cache‐based computer architectures achieving a throughput for operator evaluation of 3·108 up to 1·109 DoFs/s (degrees of freedom per second) on one Intel Haswell node with 28 cores. Compared to performance results published within the last five years for high‐order discontinuous Galerkin discretizations of the compressible Navier‐Stokes equations, our approach reduces computational costs by more than one order of magnitude for the same setup.
Summary The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high‐order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L2‐based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence‐free H(div)‐conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. This work raises the question whether and to which extent these two approaches are equivalent when applied to underresolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for underresolved simulations of turbulent flows due to their inherent dissipation mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.