In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38− and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38− and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38− LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38− cells variably expressed “aberrant” membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication–mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38− LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.
Chronic myeloid leukemia (CML) is a stem cell-derived leukemia in which neoplastic cells exhibit the Philadelphia chromosome and the related oncoprotein BCR-ABL1. The disease is characterized by an accumulation of myeloid precursor cells in the peripheral blood and bone marrow (BM). A small fraction of neoplastic cells in the CML clone supposedly exhibits self-renewal and thus long-term disease-propagating ability. However, so far, little is known about the phenotype, function, and target expression profiles of these leukemic stem cells (LSCs). Recent data suggest that CML LSCs aberrantly express the interleukin-2 receptor alpha chain CD25. Whereas normal CD34/CD38 BM stem cells display only low amounts of CD25 or lack CD25 altogether, CD34/CD38 LSCs express CD25 strongly in more than 90% of all patients with untreated CML. As a result, CD25 can be used to identify and quantify CML LSCs. In addition, it has been shown that CD25 serves as a negative growth regulator of CML LSCs. Here, we review the value of CD25 as a novel marker and potential drug target in CML LSCs.
Brain metastases frequently occur in lung cancer and dramatically limit prognosis of affected patients. The influence of tumor-associated macrophages and microglia (TAM/M) and their receptor CX3CR1 on different steps of brain metastasis formation from lung cancer is poorly characterized. We established a syngeneic orthotopic cerebral metastasis model in mice by combining a chronic cranial window with repetitive intravital 2-photon laser scanning microscopy. This allowed in vivo tracking of fluorescence-expressing tumor cells and TAM/M on a single-cell level over weeks. Intracarotid injection of red tdTomato-fluorescent Lewis lung carcinoma cell was performed in transgenic mice either proficient or deficient for CX3CR1. After intracarotid cell injection, intravascular tumor cells extravasated into the brain parenchyma and formed micro- and mature macrometastases. We observed potential phagocytosis of extravasated tumor cells by TAM/M. However, during later steps of metastasis formation, these anti-tumor effects diminished and were paralleled by TAM/M accumulation and activation. Although CX3CR1 deficiency resulted in a lower number of extravasated tumor cells, progression of these extravasated cells into micro metastases was more efficient. Overall, this resulted in a comparable number of mature macrometastases in CX3CR1-deficient and -proficient mice. Our findings indicate that unspecific inhibition of CX3CR1 might not be a suitable therapeutic option to prevent dissemination of lung cancer cells to the brain. Given the close interaction between TAM/M and tumor cells during metastasis formation, other therapeutic approaches targeting TAM/M function may warrant further evaluation. The herein established orthotopic mouse model may be a useful tool to evaluate such concepts in vivo .
Background/Aims: Pulse wave analysis (PWA) and pulse wave velocity (PWV) provide information about arterial stiffness and elasticity, which is mainly used for cardiovascular risk stratification. In the presented prospective observational pilot study, we examined the hypothesis that radiocephalic fistula (RCF)-related changes of haemodynamics and blood vessel morphology including high as well as low flow can be seen in specific changes of pulse wave (PW) morphology. Methods: Fifty-six patients with RCF underwent local ambilateral peripheral PWA and PWV measurement with the SphygmoCor ® device. Given that the output parameters of the SphygmoCor ® are not relevant for the study objectives, we defined new suitable parameters for PWA in direct proximity to fistulas and established an appropriate analysing algorithm. Duplex sonography served as reference method. Results: Marked changes of peripheral PW morphology when considering interarm differences of slope and areas between the fistula and non-fistula arms were observed in the Arteria radialis, A. brachialis and arterialized Vena cephalica. The sum of the slope differences was found to correlate with an increased flow, while in patients with fistula failure no changes in PW morphology were seen. Moreover, PWV was significantly reduced in the fistula arm. Conclusion: Beside duplex sonography, ambilateral peripheral PWA and PWV measurements are potential new clinical applications to characterize and monitor RCF function, especially in terms of high and low flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.