Financial portfolio managers typically face multi-period optimization tasks such as short-selling or investing at least a particular portion of the portfolio in a specific industry sector. A common approach to tackle these problems is to use constrained Markov decision process (CMDP) methods, which may suffer from sample inefficiency, hyperparameter tuning, and lack of guarantees for constraint violations. In this paper, we propose Action Space Decomposition Based Optimization (ADBO) for optimizing a more straightforward surrogate task that allows actions to be mapped back to the original task. We examine our method on two real-world data portfolio construction tasks. The results show that our new approach consistently outperforms state-of-the-art benchmark approaches for general CMDPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.