Employing Bessel beams in imaging takes advantage of their self-reconstructing properties to achieve small focal points while maintaining a large depth of focus. Bessel beams are efficiently generated using axicons, and their utility in scanning imaging systems, such as optical coherence tomography (OCT), has been demonstrated. As these systems are miniaturized to allow, for example, endoscopic implementations, micro-axicons are required to assure the maintenance of a large depth of focus. We demonstrate here the design, fabrication, and application of molded micro-axicons for use in silicon-based micro-optical benches. It is shown that arrangements of multiple convex and concave axicons may be implemented to optimize the depth of focus in a miniaturized OCT system, using a telescopic optical arrangement of considerably shorter optical system length than that achievable with classical micro-optics.
Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.
We theoretically study the frictional damping of a small probe object on a coated planar surface, analyzing the resulting phonon modes via a theory of viscoelasticity. Three different types of excitations are found to contribute to friction in distinct ways: traveling (3D) spherical waves, traveling (2D) surface waves, and evanescent waves. While traveling waves transport energy away from the probe, determined by long range elastic properties (wavelength), evanescent waves transform energy into heat in a near-field range, characterized by the size of the probe. Thus, fundamentally different behaviors are predicted, depending on coating thickness and material properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.