The high-energy requirements of cleanrooms are the main motivation for optimizing their operational conditions. The ventilation system consumes the most energy in order to ensure the precise air conditioning of the room (filtration, temperature, and humidity adjustment). The main function of the ventilation system is to keep particle concentration to a minimum. This work deals with the optimization of an experimental operating room via the optimization of air supply through the distribution element (laminar airflow ceiling) in the range of 0.15–0.25 m·s−1. The laminar airflow between the distribution element and the patient is influenced by the operating light and different airflow velocities. These factors affect changes in particle concentration. Ansys Fluent software was used to investigate the nature of the flow, velocity profiles, and particle trajectories. The results of our numerical simulation demonstrate that a suitable flow rate setting increases the efficiency of particle reduction in the operating table area by up to 54%, which can, in turn, reduce operating costs. The simulated air velocity profile was subsequently verified using the particle image velocimetry (PIV) method. The typical size of particles monitored for in cleanrooms is 0.5 μm according to ISO EN 7. Therefore, the results of this study should be helpful in correctly designing distribution elements for clean rooms.
At present, we are still feeling the effects of the COVID-19 pandemic in connection with the huge amount of waste generated. However, the reuse of the produced waste in other processes requires energy consumption. This article deals with the reuse of face masks FFP2, which were added as an admixture to spruce or beech sawdust and then processed into pellets. During the production process of the pellets, energy consumption was measured and further converted to one ton of pellets, and also the consumption was reflected in the price of electricity. After storage, the mechanical durability and dimensions of the individual pellets were measured, and their density was calculated. Based on the results, it can be concluded that spruce pellets with 10% face masks FFP2 (consumption 747.41 kWh; durability 97.53%) and beech pellets with 5% face masks FFP2 (consumption 721.27 kWh; durability 97.38%) achieved higher values of mechanical durability and also consumed more energy than the remaining samples with lower values of durability without considering the sample with spruce sawdust and 5% FFP2 face masks (consumption 872.63 kWh; durability 91.68%). The production of spruce pellets with 5% FFP2 face masks was affected mainly by cold outside weather.
The combustion of biomass is accompanied by the formation of particulate matter, the presence of which in the atmosphere harms human health. It is important to show the issues of reducing these pollutants and their impact on human health. This article focuses on the process of biomass combustion. The used model consists of two parts: the combustion chamber and the flue gas tract. The article shows four types of modification of the flue gas tract designed to reduce the amount of particulate matter in the atmosphere. Baffles are located in the flue gas tract, which is designed to capture the particulate matter. The final model is simulated by turbulent–viscosity models, k-ε realizable model, and then k-ω shear stress transport model. The interaction between turbulence and chemical reactions is expressed by using the Eddy Dissipation Concept model. The results then show different profiles of temperature, velocity, and particle distribution. Based on the evaluated data from two different calculations, it can be concluded that the baffles have a significant effect on the reduction of particulate matter in the atmosphere. The used baffles are able to capture mainly particles with a diameter greater than 100 µm. A significant number of particles with a diameter lower than 100 µm flows from the flue gas tract to the surrounding environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.