Starting from (MeO)3SiCH2Cl (10) and Ph2(H)SiCH2OH (16), respectively, the (hydroxymethyl)diphenyl(piperidinoalkyl)silanes (HOCH2)Ph2Si(CH2)2NC5H10 (6) and (HOCH2)Ph2Si(CH2)3NC5H10 (8) have been synthesized [10→Ph2(MeO)SiCH2Cl (11)→Ph2(CH2=CH)SiCH2Cl (12)→Ph2(CH2=CH)SiCH2OAc (13)→Ph2(CH2=CH)SiCH2OH (14)→Ph2(CH2=CH)SiCH2OSiMe3 (15)→6; 16→Ph2(H)SiCH2OSiMe3 (17)→8; NC5H10 = piperidino]. N-Quaternization of 6 and 8 with MeI gave the corresponding methiodides 7 and 9, respectively. As shown by IR-spectroscopic studies, compounds 6 and 8 form intramolecular O-H···N hydrogen bonds in solution (CCl4). In the crystal, 6 (space group Pna21; two crystallographically independent molecules) also forms intramolecular O-H···N hydrogen bonds whereas 8 (space group P1̅) forms intermolecular O-H···N hydrogen bonds leading to the formation of centrosymmetric dimers (single-crystal X-ray diffraction studies). The (hydroxymethyl) silanes 6-9 and the related silanols (HO)Ph2Si(CH2)2NC5H 10 (sila-pridinol; 1), sila-pridinol methiodide (2), (HO)Ph2Si(CH2)3NC5H10 (sila-difenidol; 3) and sila-difenidol methiodide (4) were investigated for their antimuscarinic properties. In functional pharmacological experiments as well as in radioligand competition studies, all compounds behaved as simple competitive antagonists at muscarinic M1-, M2-, M3- and M4-receptors. In general, the silanols 1-4 displayed higher receptor affinities (up to 100-fold) than the corresponding (hydroxymethyl) silanes 6-9 . In the (hydroxymethyl)silane series, compound 7 was found to be the most potent muscarinic antagonist [pA2/pKi= 8,71/8,6 (M1), 8,23/7,8 (M2), 8,19/7,8 (M3); pKi = 8,2 (M4)]. In the silanol series, the related compound 2 showed the most interesting antimuscarinic properties [pA2/pKi = 10,37/9,6 (M1), 8,97/8,8 (M2), 9,08/8,8 (M3); pKi = 9,4 (M4)].