Recommended by Ebroul Izquierdo Content-based image retrieval (CBIR) system with relevance feedback, which uses the algorithm for feature-vector (FV) dimension reduction, is described. Feature-vector reduction (FVR) exploits the clustering of FV components for a given query. Clustering is based on the comparison of magnitudes of FV components of a query. Instead of all FV components describing color, line directions, and texture, only their representative members describing FV clusters are used for retrieval. In this way, the "curse of dimensionality" is bypassed since redundant components of a query FV are rejected. It was shown that about one tenth of total FV components (i.e., the reduction of 90%) is sufficient for retrieval, without significant degradation of accuracy. Consequently, the retrieving process is accelerated. Moreover, even better balancing between color and line/texture features is obtained. The efficiency of FVR CBIR system was tested over TRECVid 2006 and Corel 60 K datasets.
The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.