The desiccation-tolerant plant can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress- and autophagy-related TFs such as ,, ,, and were up-regulated, while chloroplast- and flowering-related TFs such as, ,, , and were repressed. , a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis- and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated () or repressed (, , and). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.
Cry1C domain III amino acid residues involved in specificity for beet armyworm (Spodoptera exigua) were identified. For this purpose, intradomain III hybrids between Cry1E (nontoxic) and Cry1E-Cry1C hybrid G27 (toxic) were made. Crossover points of these hybrids defined six sequence blocks containing between 1 and 19 of the amino acid differences between Cry1E and G27. Blocks B, C, D, and E of G27 were shown to be required for optimal activity against S. exigua. Block E was also required for optimal activity against the tobacco hornworm (Manduca sexta), whereas block D had a negative effect on toxicity for this insect. The mutagenesis of individual amino acids in block B identified Trp-476 as the only amino acid in this block essential, although not sufficient by itself, for full S. exigua activity. In block D, we identified a seven-amino-acid insertion in G27 that was not in Cry1E. The deletion of either one of two groups of four consecutive amino acids in this insertion completely abolished activity against S. exiguabut resulted in higher activity against M. sexta. Alanine substitutions of the first group had little effect on toxicity, whereas alanine substitutions of the second group had the same effect as its deletion. These results identify groups of amino acids as well as some individual residues in Cry1C domain III, which are strongly involved inS. exigua-specific activity as well as sometimes involved in M. sexta-specific activity.
Abiotic stresses, which at the molecular level leads to oxidative damage, are major determinants of crop yield loss worldwide. Therefore, considerable efforts are directed towards developing strategies for their limitation and mitigation. Here the superoxide-inducing agent paraquat (PQ) was used to generate oxidative stress in the model species Arabidopsis thaliana and the crops tomato and pepper. Pre-treatment with the biostimulant SuperFifty (SF) effectively and universally suppressed PQ-induced leaf lesions, H2O2 build up, cell destruction and photosynthesis inhibition. To further investigate the stress responses and SF-induced protection at the molecular level, we investigated the metabolites by GC-MS metabolomics. PQ induced specific metabolic changes such as accumulation of free amino acids (AA) and stress metabolites. These changes were fully prevented by the SF pre-treatment. Moreover, the metabolic changes of the specific groups were tightly correlating with their phenotypic characteristics. Overall, this study presents physiological and metabolomics data which shows that SF protects against oxidative stress in all three plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.