Simultaneous wireless information and power transfer (SWIPT) is a promising solution for enabling long-life, and self-sustainable wireless networks. In this thesis, we propose a practical non-linear energy harvesting (EH) model and design a resource allocation algorithm for SWIPT systems. In particular, the algorithm design is formulated as a non-convex optimization problem for the maximization of the total harvested power at the EH receivers subject to quality of service (QoS) constraints for the information decoding (ID) receivers. To circumvent the non-convexity of the problem, we transform the corresponding non-convex sum-of-ratios objective function into an equivalent objective function in parametric subtractive form. Furthermore, we design a computationally efficient iterative resource allocation algorithm to obtain the globally optimal solution.Numerical results illustrate significant performance gain in terms of average total harvested power for the proposed non-linear EH receiver model, when compared to the traditional linear model.
In this paper, we consider a simple network consisting of a source, a half-duplex decode-and-forward relay, and a destination. We propose a new relaying protocol employing adaptive link selection, i.e., in any given time slot, based on the channel state information of the source-relay and the relay-destination link a decision is made whether the source or the relay transmits. In order to avoid data loss at the relay, adaptive link selection requires the relay to be equipped with a buffer such that data can be queued until the relay-destination link is selected for transmission. We study both delay constrained and delay unconstrained transmission. For the delay unconstrained case, we characterize the optimal link selection policy, derive the corresponding throughput, and develop an optimal power allocation scheme. For the delay constrained case, we propose to starve the buffer of the relay by choosing the decision threshold of the link selection policy smaller than the optimal one and derive a corresponding upper bound on the average delay. Furthermore, we propose a modified link selection protocol which avoids buffer overflow by limiting the queue size. Our analytical and numerical results show that buffer-aided relaying with adaptive link selection achieves significant throughput gains compared to conventional relaying protocols with and without buffers where the relay employs a fixed schedule for reception and transmission.
In this paper, we consider a multiple-input multiple-output wireless powered communication network (MIMO-WPCN), where multiple users harvest energy from a dedicated power station in order to be able to transmit their information signals to an information receiving station. Employing a practical non-linear energy harvesting (EH) model, we propose a joint time allocation and power control scheme, which takes into account the uncertainty regarding the channel state information (CSI) and provides robustness against imperfect CSI knowledge. In particular, we formulate two non-convex optimization problems for different objectives, namely system sum throughput maximization and maximization of the minimum individual throughput across all wireless powered users. To overcome the non-convexity, we apply several transformations along with a one-dimensional search to obtain an efficient resource allocation algorithm. Numerical results reveal that a significant performance gain can be achieved when the resource allocation is designed based on the adopted non-linear EH model instead of the conventional linear EH model. Besides, unlike a non-robust baseline scheme designed for perfect CSI, the proposed resource allocation schemes are shown to be robust against imperfect CSI knowledge. Index TermsWireless powered communication networks, non-linear energy harvesting model, time allocation, power control. This paper has been presented in part at IEEE ICC 2016 [1] and at SPAWC 2016 [2].
Abstract-We consider a simple network consisting of a source, a half-duplex decode-and-forward relay with a buffer, and a destination. We assume that the direct source-destination link is not available and all links undergo fading. We propose two new buffer-aided relaying schemes with different requirements regarding the availability of channel state information at the transmitter (CSIT). In the first scheme, neither the source nor the relay have full CSIT, and consequently, both nodes are forced to transmit with fixed rates. In contrast, in the second scheme, the source does not have full CSIT and transmits with fixed rate but the relay has full CSIT and adapts its transmission rate accordingly. In the absence of delay constraints, for both fixed rate and mixed rate transmission, we derive the throughput-optimal buffer-aided relaying protocols which select either the source or the relay for transmission based on the instantaneous signal-to-noise ratios (SNRs) of the source-relay and relay-destination links. In addition, for the delay constrained case, we develop buffer-aided relaying protocols that achieve a predefined average delay. Compared to conventional relaying protocols, which select the transmitting node according to a predefined schedule independent of the instantaneous link SNRs, the proposed buffer-aided protocols with adaptive link selection achieve large performance gains. In particular, for fixed rate transmission, we show that the proposed protocol achieves a diversity gain of two as long as an average delay of more than three time slots can be afforded. Furthermore, for mixed rate transmission with an average delay of E{T } time slots, a multiplexing gain of r = 1 − 1/(2E{T }) is achieved. As a by-product of the considered link adaptive protocols, we also develop a novel conventional relaying protocol for mixed rate transmission, which yields the same multiplexing gain as the protocol with adaptive link selection. Hence, for mixed rate transmission, for sufficiently large average delays, buffer-aided half-duplex relaying with and without adaptive link selection does not suffer from a multiplexing gain loss compared to full-duplex relaying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.