Simultaneous wireless information and power transfer (SWIPT) is a promising solution for enabling long-life, and self-sustainable wireless networks. In this thesis, we propose a practical non-linear energy harvesting (EH) model and design a resource allocation algorithm for SWIPT systems. In particular, the algorithm design is formulated as a non-convex optimization problem for the maximization of the total harvested power at the EH receivers subject to quality of service (QoS) constraints for the information decoding (ID) receivers. To circumvent the non-convexity of the problem, we transform the corresponding non-convex sum-of-ratios objective function into an equivalent objective function in parametric subtractive form. Furthermore, we design a computationally efficient iterative resource allocation algorithm to obtain the globally optimal solution.Numerical results illustrate significant performance gain in terms of average total harvested power for the proposed non-linear EH receiver model, when compared to the traditional linear model.
In this paper, we consider a multiple-input multiple-output wireless powered communication network (MIMO-WPCN), where multiple users harvest energy from a dedicated power station in order to be able to transmit their information signals to an information receiving station. Employing a practical non-linear energy harvesting (EH) model, we propose a joint time allocation and power control scheme, which takes into account the uncertainty regarding the channel state information (CSI) and provides robustness against imperfect CSI knowledge. In particular, we formulate two non-convex optimization problems for different objectives, namely system sum throughput maximization and maximization of the minimum individual throughput across all wireless powered users. To overcome the non-convexity, we apply several transformations along with a one-dimensional search to obtain an efficient resource allocation algorithm. Numerical results reveal that a significant performance gain can be achieved when the resource allocation is designed based on the adopted non-linear EH model instead of the conventional linear EH model. Besides, unlike a non-robust baseline scheme designed for perfect CSI, the proposed resource allocation schemes are shown to be robust against imperfect CSI knowledge. Index TermsWireless powered communication networks, non-linear energy harvesting model, time allocation, power control. This paper has been presented in part at IEEE ICC 2016 [1] and at SPAWC 2016 [2].
In this paper, we design a robust resource allocation algorithm for a wireless-powered communication network (WPCN) taking into account residual hardware impairments (HWIs) at the transceivers, the imperfectness of the channel state information, and the non-linearity of practical radio frequency energy harvesting circuits. In order to ensure power-efficient secure communication, physical layer security techniques are exploited to deliberately degrade the channel quality of a multiple-antenna eavesdropper. The resource allocation algorithm design is formulated as a nonconvex optimization problem for minimization of the total consumed power in the network, while guaranteeing the quality of service of the information receivers in terms of secrecy rate. The globally optimal solution of the optimization problem is obtained via a two-dimensional search and semidefinite programming relaxation. To strike a balance between computational complexity and system performance, a low-complexity iterative suboptimal resource allocation algorithm is thenproposed. Numerical results demonstrate that both the proposed optimal and suboptimal schemes can significantly reduce the total system power consumption required for guaranteeing secure communication, and unveil the impact of HWIs on the system performance: (1) residual HWIs create a system performance bottleneck in the high transmit/receive power regimes; (2) increasing the number of transmit antennas can effectively reduce the system power consumption and alleviate the performance degradation due to residual HWIs; (3) imperfect CSI increases the system power consumption and exacerbates the impact of residual HWIs.
In this paper, we design a resource allocation algorithm for multiuser simultaneous wireless information and power transfer systems for a realistic non-linear energy harvesting (EH) model. In particular, the algorithm design is formulated as a nonconvex optimization problem for the maximization of the longterm average total harvested power at EH receivers subject to quality of service requirements for information decoding receivers. To obtain a tractable solution, we transform the corresponding non-convex sum-of-ratios objective function into an equivalent objective function in parametric subtractive form. This leads to a computationally efficient iterative resource allocation algorithm. Numerical results reveal a significant performance gain that can be achieved if the resource allocation algorithm design is based on the non-linear EH model instead of the traditional linear model.
We optimize resource allocation to enable communication security in simultaneous wireless information and power transfer (SWIPT) for internet-of-things (IoT) networks. The resource allocation algorithm design is formulated as a non-convex optimization problem. We aim at maximizing the total harvested power at energy harvesting (EH) receivers via the joint optimization of transmit beamforming vectors and the covariance matrix of the artificial noise injected to facilitate secrecy provisioning. The proposed problem formulation takes into account the non-linearity of energy harvesting circuits and the quality of service requirements for secure communication.To obtain a globally optimal solution of the resource allocation problem, we first transform the resulting non-convex sum-ofratios objective function into an equivalent objective function in parametric subtractive form, which facilitates the design of a novel iterative resource allocation algorithm. In each iteration, the semidefinite programming (SDP) relaxation approach is adopted to solve a rank-constrained optimization problem optimally. Numerical results reveal that the proposed algorithm can guarantee communication security and provide a significant performance gain in terms of the harvested energy compared to existing designs which are based on the traditional linear EH model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.