Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electromechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future.
We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare-earth doped crystals, we make use of a special transfer protocol using staggered π pulses. We predict total transfer efficiencies on the order of 90%.
We study the effects of four-wave mixing (4WM) in a quantum memory scheme based on electromagnetically induced transparency (EIT). We treat the problem of field propagation on the quantum mechanical level, which allows us to calculate the fidelity of propagation for a quantum light pulse such as a single photon. While 4WM can be beneficial for classical, all-optical information storage, the quantum noise associated with the signal amplification and idler generation is, in general, detrimental for a quantum memory. We identify a range of parameters where 4WM makes a single-photon quantum memory impossible.
A protocol is discussed which allows one to realize a transducer for single
photons between the optical and the microwave frequency range. The transducer
is a spin ensemble, where the individual emitters possess both an optical and a
magnetic-dipole transition. Reversible frequency conversion is realized by
combining optical photon storage, by means of EIT, with the controlled
switching of the coupling between the magnetic-dipole transition and a
superconducting qubit, which is realized by means of a microwave cavity. The
efficiency is quantified by the global fidelity for transferring coherently a
qubit excitation between a single optical photon and the superconducting qubit.
We test various strategies and show that the total efficiency is essentially
limited by the optical quantum memory: It can exceed 80% for ensembles of NV
centers and approaches 99% for cold atomic ensembles, assuming state-of-the-art
experimental parameters. This protocol allows one to bridge the gap between the
optical and the microwave regime so to efficiently combine superconducting and
optical components in quantum networks
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.