Citation: Lebedev AA, Bessolova YuN , Efimov NS, Bychkov ER, Droblenkov AV, Shabanov PD (2020) Role of orexin peptide system in emotional overeating induced by brain reward stimulation in fed rats. Research Results in Pharmacology 6(1): 81-91. AbstractIntroduction: The purpose of this work was to prove that the reaction of food self-deprivation in "fed up" rats is a suitable model for studying the emotional overeating in the experiment. Methods:The self-deprivation reaction, i.e. self-isolation of an animal from food during electrical self-stimulation of the brain, was studied in animals with food deprivation. To reproduce the self-stimulation of the lateral hypothalamus, the male Wistar rats were trained to press a pedal in a Skinner box. After training, the rats received food deprivation, then a feeder was placed in the Skinner box, and a conditioned food reflex was developed in rats within 5 days. Results and discussion:The food self-deprivation reaction was observed in the "satiated" rats with a current intensity of 10% and above the threshold for self-stimulation. Hungry animals pressed the pedal for hypothalamic self-stimulation and took no notice of the feeding trough. Sulpiride, a dopamine D2 antagonist (5 and 20 mg/kg i.p.), administered to the "satiated" rats decreased both the eating behavior and self-stimulation in food self-deprivation testing. SB-408124, an orexin A receptor antagonist (0.5 mg/ml, 20 μl intranasally) reduced only the number of pellets eaten, but not the number of pedal presses. Conclusion:The orexin A receptors are preferably involved in emotional eating compared with orexin B (OX2R TCS-OX2-29) and D2 dopamine receptors. Because emotional eating is significantly related to clinical eating disorders, like bulimia and binge eating disorder, it seems promising to use drugs of the orexin system to treat and prevent the issue.
The aim was to study the effect of rewarding and aversive stimulation of lateral hypothalamus on the turnover of monoamines in the terminal structures of the mesocorticolimbic and nigrostriatal systems: the nucleus accumbens (NAc) and striatum (St). The Wistar male rats were implanted electrodes in the lateral hypothalamus and further trained in self-stimulation test. Animals were also selected on aversive emotional reactions were observed after pressing the pedal for self-stimulation. Subsequently, forced stimulation was performed for 5 minutes and the animals were decapitated. The content of norepinephrine, dopamine (DA) and its metabolites 3,4-dioxiphenylacetic acid (DOPАС) and homovanilinic acid, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens and striatum were determined by high performance liquid chromatography with electrochemical detection. Positive and aversive stimulation of lateral hypothalamus decreased the level of DA in the NAc, however, only stimulation of the positive emotiogenic zone increased the DA and 5-HT turnover in the NAc, as evidenced by an increase in the DOPАС/DA and 5-HIAA/SER ratios, respectively. Rewarding and aversive stimulation decreased the level of 5-HT in St, however, only rewarding stimulation decreased the St level of 5-HIAA compared to control and animals with aversive stimulation. Rewarding stimulation increased the turnover of serotonin in St, as evidenced by the increase of 5-HIAA/5-HT ratios. The activity of the noradrenergic system did not change after rewarding and aversive stimulation. Thus, both rewarding and aversive electrical stimulation increases the turnover of DA and 5-HT in NAc and St. However, these changes are more significant after rewarding stimulation. DA turnover increases more in NAc, and 5-HT turnover in St. The data obtained indicate the specificity of the dopaminergic and serotonergic involvement for the formation of a modality of emotional reactions. Data may provide guidance for developing treatment strategies for neuropsychiatric diseases related to the malfunction of the reward system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.