To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named ‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.
In this study a comparative assessment of the impacts of urbanization and of forest fires as well as their combined effect on runoff response is investigated using earth observation and the Soil Conservation Service Curve Number (SCS-CN) direct runoff estimation method in a Mediterranean peri-urban watershed in Attica, Greece. The study area underwent a significant population increase and a rapid increase of urban land uses, especially from the 1980s to the early 2000s. The urbanization process in the studied watershed caused a considerable increase of direct runoff response. A key observation of this study is that the impact of forest fires is much more prominent in rural watersheds than in urbanized watersheds. However, the increments of runoff response are important during the postfire conditions in all cases. Generally, runoff increments due to urbanization seem to be higher than runoff increments due to forest fires affecting the associated hydrological risks. It should also be considered that the effect of urbanization is lasting, and therefore, the possibility of an intense storm to take place is higher than in the case of forest fires that have an abrupt but temporal impact on runoff response. It should be noted though that the combined effect of urbanization and forest fires results in even higher runoff responses. The SCS-CN method, proved to be a valuable tool in this study, allowing the determination of the direct runoff response for each soil, land cover and land management complex in a simple but efficient way. The analysis of the evolution of the urbanization process and the runoff response in the studied watershed may provide a better insight for the design and implementation of flood risk management plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.