Modularity is designed to measure the strength of division of a network into clusters (known also as communities). Networks with high modularity have dense connections between the vertices within clusters but sparse connections between vertices of different clusters. As a result, modularity is often used in optimization methods for detecting community structure in networks, and so it is an important graph parameter from a practical point of view. Unfortunately, many existing non-spatial models of complex networks do not generate graphs with high modularity; on the other hand, spatial models naturally create clusters. We investigate this phenomenon by considering a few examples from both sub-classes. We prove precise theoretical results for the classical model of random d-regular graphs as well as the preferential attachment model, and contrast these results with the ones for the spatial preferential attachment (SPA) model that is a model for complex networks in which vertices are embedded in a metric space, and each vertex has a sphere of influence whose size increases if the vertex gains an in-link, and otherwise decreases with time. The results obtained in this paper can be used for developing statistical tests for models selection and to measure statistical significance of clusters observed in complex networks.
Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [6, 23] the same result was proved for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs for any integer k ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of bounded maximum degree into suitable k-uniform 'quasi-random' hypergraphs.
Chvátal, Rödl, Szemerédi and Trotter [V. Chvátal, V. Rödl, E. Szemerédi, W.T. Trotter Jr., The Ramsey number of a graph with a bounded maximum degree, J. Combin. Theory Ser. B 34 (1983) 239-243] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. We prove that the same holds for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform 'pseudo-random' hypergraphs.
Abstract. We study the two most common types of percolation processes on a sparse random graph with a given degree sequence. Namely, we examine first a bond percolation process where the edges of the graph are retained with probability p, and afterwards we focus on site percolation where the vertices are retained with probability p. We establish critical values for p above which a giant component emerges in both cases. Moreover, we show that, in fact, these coincide. As a special case, our results apply to power-law random graphs. We obtain rigorous proofs for formulas derived by several physicists for such graphs.
We consider a model for complex networks that was introduced by Krioukov et al. In this model, $N$ points are chosen randomly inside a disk on the hyperbolic plane and any two of them are joined by an edge if they are within a certain hyperbolic distance. The $N$ points are distributed according to a quasi-uniform distribution, which is a distorted version of the uniform distribution. The model turns out to behave similarly to the well-known Chung-Lu model, but without the independence between the edges. Namely, it exhibits a power-law degree sequence and small distances but, unlike the Chung-Lu model and many other well-known models for complex networks, it also exhibits clustering. The model is controlled by two parameters $\alpha$ and $\nu$ where, roughly speaking, $\alpha$ controls the exponent of the power-law and $\nu$ controls the average degree. The present paper focuses on the evolution of the component structure of the random graph. We show that (a) for $\alpha > 1$ and $\nu$ arbitrary, with high probability, as the number of vertices grows, the largest component of the random graph has sublinear order; (b) for $\alpha < 1$ and $\nu$ arbitrary with high probability there is a "giant" component of linear order, and (c) when $\alpha=1$ then there is a non-trivial phase transition for the existence of a linear-sized component in terms of $\nu$. A corrigendum was added to this paper 29 Dec 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.