We investigate the adsorption of hexavalent uranium, U(VI), on phosphorylated cellulose nanofibers (PHO-CNF) and compare the results with those for native and TEMPO-oxidized nanocelluloses. Batch adsorption experiments in aqueous media show that PHO-CNF is highly efficient in removing U(VI) in the pH range between 3 and 6. Gelling of nanofiber hydrogels is observed at U(VI) concentration of 500 mg/L. Structural changes in the nanofiber network (scanning and transmission electron microscopies) and the surface chemical composition (X-ray photoelectron spectroscopy) gave insights on the mechanism of adsorption. The results from batch adsorption experiments are fitted to Langmuir, Freundlich, and Sips isotherm models, which indicate a maximum adsorption capacity of 1550 mg/g, the highest value reported so far for any bioadsorbent. Compared to other metals (Zn, Mn, and Cu) and typical ions present in natural aqueous matrices the phosphorylated nanofibers are shown to be remarkably selective to U(VI). The results suggest a solution for the capture of uranium, which is of interest given its health and toxic impacts when present in aqueous matrices.
In the present work, amino functionalized nanofibrillated cellulose (NFC) was prepared using click-chemistry in aqueous reaction conditions. First, reactive azide groups were introduced on the surface of NFC by the etherification of 1-azido-2,3-epoxypropane in alkaline water/isopropanol-mixture at ambient temperature. Then the azide groups were reacted with propargyl amine utilizing copper catalyzed azide-alkyne cycloaddition (CuAAC), leading to pH-responsive 1,2,3-triazole-4-methanamine decorated NFC. The reaction products were characterized using Fourier transform infrared spectroscopy, elemental analysis and X-ray photoelectron spectroscopy. The presence of the attached azide groups was also confirmed by reacting them with 5-(dimethylamino)-N-(2-propyl)-1-naphthalenesulfonamide by CuAAC, yielding highly fluorescent NFC. In addition, atom force microscopy and rheology studies confirmed that the original NFC nanostructure was maintained during the synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.