Graph modeling allows numerous security problems to be tackled in a general
way, however, little work has been done to understand their ability to
withstand adversarial attacks. We design and evaluate two novel graph attacks
against a state-of-the-art network-level, graph-based detection system. Our
work highlights areas in adversarial machine learning that have not yet been
addressed, specifically: graph-based clustering techniques, and a global
feature space where realistic attackers without perfect knowledge must be
accounted for (by the defenders) in order to be practical. Even though less
informed attackers can evade graph clustering with low cost, we show that some
practical defenses are possible.Comment: ACM CCS 201
Abstract. Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called matching dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform-for data processing, and the specification and enforcement of MDs.
Abstract. Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called matching dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform-for data processing, and the specification and enforcement of MDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.