Instruction cache performance is important to instruction fetch efficiency and overall processor performance. The layout of an executable has a substantial effect on the cache miss rate and the instruction working set size during execution. This means that the performance of an executable can be improved by applying a code-placement algorithm that minimizes instruction cache conflicts and improves spatial locality. We describe an algorithm for procedure placement, one type of code placement, that significantly differs from previous approaches in the type of information used to drive the placement algorithm. In particular, we gather temporal-ordering information that summarizes the interleaving of procedures in a program trace. Our algorithm uses this information along with cache configuration and procedure size information to better estimate the conflict cost of a potential procedure ordering. It optimizes the procedure placement for single level and multilevel caches. In addition to reducing instruction cache conflicts, the algorithm simultaneously minimizes the instruction working set size of the program. We compare the performance of our algorithm with a particularly successful procedure-placement algorithm and show noticeable improvements in the instruction cache behavior, while maintaining the same instruction working set size.
As processor architectures have increased their reliance on speculative execution to improve performance, the importance of accurate prediction of what to execute speculatively has increased. Furthermore, the types of values predicted have expanded j?om the ubiquitous branch and calllreturn targets to the prediction of indirect jump targets, cache ways and data values. In general, the prediction process is one of identifying the current state of the system, and making a prediction for some as yet uncomputed value based on that state. Prediction accuracy is improved by learning what is a good prediction for that state using a feedback process at the time the predicted value is actually computed. While there have been a number of efforts to formally characterize this process, we have taken the approach of providing a simple algebraic-style notation that allows one to express this state identification and feedback process. This notation allows one to describe a wide variety of predictors in a uniform way. It also facilitates the use of an eficient search technique called geneticprogramming, which is loosely modeled on the natural evolutionary process, to explore the design space. In this paper we describe our notation and the results of the application of genetic programming to the &sign of branch and indirect jump predictors.
The Western Research Laboratory (WRL) is a computer systems research group that was founded by Digital Equipment Corporation in 1982. Our focus is computer science research relevant to the design and application of high performance scientific computers. We test our ideas by designing, building, and using real systems. The systems we build are research prototypes; they are not intended to become products.There are two other research laboratories located in Palo Alto, the Network Systems Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is located in Cambridge, Massachusetts (CRL).Our research is directed towards mainstream high-performance computer systems. Our prototypes are intended to foreshadow the future computing environments used by many Digital customers. The long-term goal of WRL is to aid and accelerate the development of high-performance uni-and multi-processors. The research projects within WRL will address various aspects of high-performance computing.We believe that significant advances in computer systems do not come from any single technological advance. Technologies, both hardware and software, do not all advance at the same pace. System design is the art of composing systems which use each level of technology in an appropriate balance. A major advance in overall system performance will require reexamination of all aspects of the system.We do work in the design, fabrication and packaging of hardware; language processing and scaling issues in system software design; and the exploration of new applications areas that are opening up with the advent of higher performance systems. Researchers at WRL cooperate closely and move freely among the various levels of system design. This allows us to explore a wide range of tradeoffs to meet system goals.We publish the results of our work in a variety of journals, conferences, research reports, and technical notes. This document is a research report. Research reports are normally accounts of completed research and may include material from earlier technical notes. We use technical notes for rapid distribution of technical material; usually this represents research in progress. UUCP: decpa!wrl-techreportsTo obtain more details on ordering by electronic mail, send a message to one of these addresses with the word ''help'' in the Subject line; you will receive detailed instructions.Reports and technical notes may also be accessed via the World Wide Web: http://www.research.digital.com/wrl/home.html. The Predictability of Branches in Libraries
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.