The domestication of the Eurasian grape ( Vitis vinifera ssp. sativa ) from its wild ancestor ( Vitis vinifera ssp. sylvestris ) has long been claimed to have occurred in Transcaucasia where its greatest genetic diversity is found and where very early archaeological evidence, including grape pips and artefacts of a 'wine culture', have been excavated. Whether from Transcaucasia or the nearby Taurus or Zagros Mountains, it is hypothesized that this wine culture spread southwards and eventually westwards around the Mediterranean basin, together with the transplantation of cultivated grape cuttings. However, the existence of morphological differentiation between cultivars from eastern and western ends of the modern distribution of the Eurasian grape suggests the existence of different genetic contribution from local sylvestris populations or multilocal selection and domestication of sylvestris genotypes. To tackle this issue, we analysed chlorotype variation and distribution in 1201 samples of sylvestris and sativa genotypes from the whole area of the species' distribution and studied their genetic relationships. The results suggest the existence of at least two important origins for the cultivated germplasm, one in the Near East and another in the western Mediterranean region, the latter of which gave rise to many of the current Western European cultivars. Indeed, over 70% of the Iberian Peninsula cultivars display chlorotypes that are only compatible with their having derived from western sylvestris populations.
The grapevine (Vitis vinifera L.) partial fragment of cDNA clone pGOGAT1 [Loulakakis and Roubelakis-Angelakis (1997) Physiol Plant 101:220-228], encoding the ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1), was overexpressed in Escherichia coli cells. A hybrid between the Fd-GOGAT fragment and maltose-binding protein was purified and used to raise a polyclonal antibody in a rabbit. The prepared antibody appeared to be specific towards Fd-GOGAT; it recognized a protein band of approximately 160 kDa on nitrocellulose blots after SDS-PAGE of total proteins from leaves, internodes, roots and calluses, and precipitated most of the enzyme activity present in grapevine protein extracts. The quantity of Fd-GOGAT protein was substantially higher in leaves than in other grapevine tissues tested, coincident with a similar distribution of the enzyme specific activity. Intracellular localization studies revealed that both the enzyme activity and the 160-kDa immunoreactive protein were associated with the chloroplastic fraction. Furthermore, the accumulation of Fd-GOGAT, glutamine synthetase (GS) and glutamate dehydrogenase (GDH), at the activity and protein levels, was monitored during leaf development of field-grown plants, from the stage of the newly expanding leaf to the senescing old leaf. Both the specific activity and quantity of the 160-kDa polypeptide of Fd-GOGAT were higher in the mature, full sized leaves and substantially lower in young and senescing leaves. GS specific activity and immunoreactive protein followed the same trend as Fd-GOGAT, while GDH showed opposite developmental patterns of accumulation. The biological significance of the presence of Fd-GOGAT in the various grapevine tissues and its physiological role during early development and natural senescence of the leaves are discussed.
Arginine decarboxylase (ADC; EC 4.1.1.19) is a key enzyme in one of the two pathways to putrescine. We present the first ADC cDNA from a woody perennial plant species, the grapevine (Vitis vinifera L.), which exhibits 70-80% homology with other dicot ADCs. The effects of ammonium, nitrate, and putrescine on ADC specific activity, soluble polyamine levels, ADC-mRNA, endogeneous arginine and ornithine, and arginase specific activity were investigated in suspension cultures of grapevine cells. The addition of NH4+ to cells cultured in NH4(+)-free medium, resulted in a 4-fold increase in ADC activity and concomitantly in a 4-fold increase in putrescine and a 3-fold decrease in arginine. During this period ornithine increased and arginase activity followed a reverse pattern of changes compared with ADC. In contrast, the addition of NO3- did not markedly affect ADC activity, putrescine, arginine and ornithine, but transiently increased arginase activity. The addition of putrescine caused a 4-fold decrease in ADC activity and increased arginine, ornithine and arginase activity. The changes in ADC specific activity were not accompanied by analogous changes in the ADC transcript levels. These results further support the view that ADC regulation is not exhibited, at least for the factors considered in this work, at the transcriptional level.
No abstract
Contents of endogenous free and conjugated polyamines were determined in embryogenic and non‐embryogenic leaf regions of Camellia japonica leaf explants, before (day 0), and 20 and 45 days after the induction of direct somatic embryogenesis, to clarify whether or not polyamines are linked to the specific morphogenic responses previously reported in the leaf regions. The analysis was carried out by high‐performance liquid chromatography. The results showed that there were no significant differences in the endogenous free and conjugated putrescine (Put), spermidine (Spd) and spermine (Spm) contents between the embryogenic and non‐embryogenic leaf regions of the same leaf. Thus, leaf region‐specific embryogenic response in C. japonica is not being determined/conditioned by the endogenous levels of Put, Spd and/or Spm. However, soluble and insoluble conjugated Put and soluble conjugated Spd seem to be related to the formation and development of globular embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.