Ablation of Mer function in mer(kd) mice results in a retinal phenotype almost identical with that of RCS rats. The similarity in phenotypes between the two rodent models suggests that an RPE phagocytic defect is a feature of all types of retinal degeneration caused by loss of function of Mer tyrosine kinase, perhaps including mutations in human MERTK.
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Colonic crypt cells possess basolateral Ca(2+)-regulated K+ channels which support Cl- secretion by providing the necessary driving force. The pharmacological characteristics of these channels were examined in Ussing chamber experiments of rat and rabbit colon mucosa by the use of blockers. The chromanol 293B, a blocker of KVLQT1 channels, and clotrimazole (CTZ), a blocker of small Ca(2+)-activated K+ channels, blocked stimulated Cl- secretion completely. Small-conductance Ca(2+)-activated K+ channels (SK) in excised basolateral patches of rat colonic crypts were inhibited concentration dependently by the imidazoles CTZ, NS004 and NS1619 and activated by 1-EBIO. These properties are similar to those of the known human SK channel (hSK4). hSK4-expressing Xenopus laevis oocytes showed ionomycin-activated and CTZ-inhibited K+ currents. When P2Y2 receptors were coexpressed these currents were also activated by ATP. The concentration/response curve was identical to that of rat SK channels. In human colonocytes (T84) exposed to hSK4 antisense probes, but not to sense probes, carbachol-induced K+ currents were attenuated. With RT-PCR an hSK4 could be demonstrated in human colon and in T84 colonocytes. By homology cloning the SK of the rat colon (rSK4) was identified. This protein has a high homology to hSK4 and mouse IK1. These data indicate that the Ca(2+)-activated and imidazole-inhibited basolateral K+ current in the colon is caused by SK4 channels.
Ciliary neurotrophic factor (CNTF) and the related cytokine leukemia inhibitory factor (LIF) have been implicated in regulating astrogliosis following CNS lesions. Application of the factors activates astrocytes in vivo and in vitro, and their expression as well as their receptors is upregulated after brain injury. Here, we investigated their function by studying Müller cell activation induced by optic nerve crush in CNTF- and LIF-deficient mice, and in animals with deficiencies in cytokine signaling pathways. In the retina of CNTF(-/-) mice, basal GFAP expression was reduced, but unexpectedly, injury-induced upregulation in activated Müller cells was increased during the first 3 days after lesion as compared to wild-type animals and this corresponded with higher phosphorylation level of STAT3, an indicator of cytokine signaling. The observation that LIF expression was strongly upregulated in CNTF(-/-) mice but not in wild-type animals following optic nerve lesion provided a possible explanation. In fact, additional ablation of the LIF gene in CNTF/LIF double knockout mice almost completely abolished early lesion-induced GFAP upregulation in Müller cells and STAT3 phosphorylation. Early Müller cell activation was also eliminated in LIF(-/-) mice, despite normal CNTF levels, as well as in mutants deficient in gp130/JAK/STAT signaling and in conditional STAT3 knockout mice. Our results demonstrate that LIF signaling via the gp130/JAK/STAT3 pathway is required for the initiation of the astrogliosis-like reaction of retinal Müller cells after optic nerve injury. A potential role of CNTF was possibly masked by a compensatory increase in LIF signaling in the absence of CNTF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.