Abstract-Reverberation Time (T60) and Direct-to-Reverberant Ratio (DRR) are important parameters which together can characterize sound captured by microphones in non-anechoic rooms. These parameters are important in speech processing applications such as speech recognition and dereverberation. The values of T60 and DRR can be estimated directly from the Acoustic Impulse Response (AIR) of the room. In practice, the AIR is not normally available, in which case these parameters must be estimated blindly from the observed speech in the microphone signal. The Acoustic Characterization of Environments (ACE) Challenge aimed to determine the state-of-the-art in blind acoustic parameter estimation and also to stimulate research in this area. A summary of the ACE Challenge, and the corpus used in the challenge is presented together with an analysis of the results. Existing algorithms were submitted alongside novel contributions, the comparative results for which are presented in this paper. The challenge showed that T60 estimation is a mature field where analytical approaches dominate whilst DRR estimation is a less mature field where machine learning approaches are currently more successful.
Knowledge of the Direct-to-Reverberant Ratio (DRR) and Reverberation Time (T60) can be used to better perform speech and audio processing such as dereverberation. Established methods compute these parameters from measured Acoustic Impulse Responses (AIRs). However, in many practical situations the AIR is not available and the parameters must be estimated non-intrusively directly from noisy speech or audio signals. The Acoustic Characterization of Environments (ACE) Challenge is a competition to identify the most promising non-intrusive DRR and T60 estimation methods using real noisy reverberant speech. We describe the ACE corpus comprising multi-channel AIRs, and multi-channel noise including ambient, fan and babble noise recorded in the same environment as the measured AIRs, along with the corresponding DRR and T60 measurements. The evaluation methodology is discussed and comparative results are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.