This article focuses on the "second wave" of the COVID-19 pandemic in the Arctic and examines spatiotemporal patterns between July 2020 and January 2021. We analyse available COVID-19 data at the regional (subnational) level to elucidate patterns and typology of Arctic regions with respect to the COVID-19 pandemic. This article builds upon our previous research that examined the early phase of the COVID-19 pandemic between February and July 2020. The pandemic's "second wave" observed in the Arctic between September 2020 and January 2021 was severe in terms of COVID-19 infections and fatalities, having particularly strong impacts in Alaska, Northern Russia and Northern Sweden. Based on the spatiotemporal patterns of the "second wave" dynamics, we identified 5 types of the pandemic across regions: Shockwaves (Iceland, Faroe Islands, Northern Norway, and Northern Finland), Protracted Waves (Northern Sweden), Tidal Waves (Northern Russia), Tsunami Waves (Alaska), and Isolated Splashes (Northern Canada and Greenland). Although data limitations and gaps persist, monitoring of COVID-19 is critical for developing a proper understanding of the pandemic in order to develop informed and effective responses to the current crisis and possible future pandemics in the Arctic. Data used in this paper are available at https://arctic.uni.edu/arctic-covid-19.
The second year of the COVID-19 pandemic in the Arctic was dominated by the Delta wave that primarily lasted between July and December 2021 with varied epidemiological outcomes. An analysis of the Arctic’s subnational COVID-19 data revealed a massive increase in cases and deaths across all its jurisdictions but at varying time periods. However, the case fatality ratio (CFR) in most Arctic regions did not rise dramatically and was below national levels (except in Northern Russia). Based on the spatiotemporal patterns of the Delta outbreak, we identified four types of pandemic waves across Arctic regions: Tsunami (Greenland, Iceland, Faroe Islands, Northern Norway, Northern Finland, and Northern Canada), Superstorm (Alaska), Tidal wave (Northern Russia), and Protracted Wave (Northern Sweden). These regionally varied COVID-19 epidemiological dynamics are likely attributable to the inconsistency in implementing public health prevention measures, geographical isolation, and varying vaccination rates. A lesson remote and Indigenous communities can learn from the Arctic is that the three-prong (delay-prepare-respond) approach could be a tool in curtailing the impact of COVID-19 or future pandemics. This article is motivated by previous research that examined the first and second waves of the pandemic in the Arctic. Data are available at
https://arctic.uni.edu/arctic-covid-19
.
To the Editor-The Arctic provides unique insights into the COVID-19 pandemic that are of considerable importance to government policies around the world, yet experiences from the Arctic are missing from the global public-health debate 1 . Arctic remote settlements have limited access to healthcare and possess few healthcare resources with which to fight the disease 2 . In addition, Arctic populations often demonstrate higher rates of hypertension, diabetes, heart disease, tuberculosis, hepatitis and other conditions 3,4 . Despite this, in most cases, Arctic regions have fared better in the COVID-19 pandemic than have
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.