This article focuses on the "second wave" of the COVID-19 pandemic in the Arctic and examines spatiotemporal patterns between July 2020 and January 2021. We analyse available COVID-19 data at the regional (subnational) level to elucidate patterns and typology of Arctic regions with respect to the COVID-19 pandemic. This article builds upon our previous research that examined the early phase of the COVID-19 pandemic between February and July 2020. The pandemic's "second wave" observed in the Arctic between September 2020 and January 2021 was severe in terms of COVID-19 infections and fatalities, having particularly strong impacts in Alaska, Northern Russia and Northern Sweden. Based on the spatiotemporal patterns of the "second wave" dynamics, we identified 5 types of the pandemic across regions: Shockwaves (Iceland, Faroe Islands, Northern Norway, and Northern Finland), Protracted Waves (Northern Sweden), Tidal Waves (Northern Russia), Tsunami Waves (Alaska), and Isolated Splashes (Northern Canada and Greenland). Although data limitations and gaps persist, monitoring of COVID-19 is critical for developing a proper understanding of the pandemic in order to develop informed and effective responses to the current crisis and possible future pandemics in the Arctic. Data used in this paper are available at https://arctic.uni.edu/arctic-covid-19.
The second year of the COVID-19 pandemic in the Arctic was dominated by the Delta wave that primarily lasted between July and December 2021 with varied epidemiological outcomes. An analysis of the Arctic’s subnational COVID-19 data revealed a massive increase in cases and deaths across all its jurisdictions but at varying time periods. However, the case fatality ratio (CFR) in most Arctic regions did not rise dramatically and was below national levels (except in Northern Russia). Based on the spatiotemporal patterns of the Delta outbreak, we identified four types of pandemic waves across Arctic regions: Tsunami (Greenland, Iceland, Faroe Islands, Northern Norway, Northern Finland, and Northern Canada), Superstorm (Alaska), Tidal wave (Northern Russia), and Protracted Wave (Northern Sweden). These regionally varied COVID-19 epidemiological dynamics are likely attributable to the inconsistency in implementing public health prevention measures, geographical isolation, and varying vaccination rates. A lesson remote and Indigenous communities can learn from the Arctic is that the three-prong (delay-prepare-respond) approach could be a tool in curtailing the impact of COVID-19 or future pandemics. This article is motivated by previous research that examined the first and second waves of the pandemic in the Arctic. Data are available at https://arctic.uni.edu/arctic-covid-19 .
To the Editor-The Arctic provides unique insights into the COVID-19 pandemic that are of considerable importance to government policies around the world, yet experiences from the Arctic are missing from the global public-health debate 1 . Arctic remote settlements have limited access to healthcare and possess few healthcare resources with which to fight the disease 2 . In addition, Arctic populations often demonstrate higher rates of hypertension, diabetes, heart disease, tuberculosis, hepatitis and other conditions 3,4 . Despite this, in most cases, Arctic regions have fared better in the COVID-19 pandemic than have
The discourse on vulnerability to COVID-19 or any other pandemic is about the susceptibility to the effects of disease outbreaks. Over time, vulnerability has been assessed through various indices calculated using a confluence of societal factors. However, categorising Arctic communities, without considering their socioeconomic, cultural and demographic uniqueness, into the high and low continuum of vulnerability using universal indicators will undoubtedly result in the underestimation of the communities’ capacity to withstand and recover from pandemic exposure. By recognising vulnerability and resilience as two separate but interrelated dimensions, this study reviews the Arctic communities’ ability to cope with pandemic risks. In particular, we have developed a pandemic vulnerability–resilience framework for Alaska to examine the potential community-level risks of COVID-19 or future pandemics. Based on the combined assessment of the vulnerability and resilience indices, we found that not all highly vulnerable census areas and boroughs had experienced COVID-19 epidemiological outcomes with similar severity. The more resilient a census area or borough is, the lower the cumulative death per 100 000 and case fatality ratio in that area. The insight that pandemic risks are the result of the interaction between vulnerability and resilience could help public officials and concerned parties to accurately identify the populations and communities at most risk or with the greatest need, which, in turn, helps in the efficient allocation of resources and services before, during and after a pandemic. A resilience–vulnerability-focused approach described in this paper can be applied to assess the potential effect of COVID-19 and similar future health crises in remote regions or regions with large Indigenous populations in other parts of the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.