We present a novel method to solve image analogy problems [3]: it allows to learn the relation between paired images present in training data, and then generalize and generate images that correspond to the relation, but were never seen in the training set. Therefore, we call the method Conditional Analogy Generative Adversarial Network (CA-GAN), as it is based on adversarial training and employs deep convolutional neural networks. An especially interesting application of that technique is automatic swapping of clothing on fashion model photos. Our work has the following contributions. First, the definition of the end-toend trainable CAGAN architecture, which implicitly learns segmentation masks without expensive supervised labeling data. Second, experimental results show plausible segmentation masks and often convincing swapped images, given the target article. Finally, we discuss the next steps for that technique: neural network architecture improvements and more advanced applications.
Generative adversarial networks (GANs) [7] are a recent approach to train generative models of data, which have been shown to work particularly well on image data. In the current paper we introduce a new model for texture synthesis based on GAN learning. By extending the input noise distribution space from a single vector to a whole spatial tensor, we create an architecture with properties well suited to the task of texture synthesis, which we call spatial GAN (SGAN). To our knowledge, this is the first successful completely data-driven texture synthesis method based on GANs.Our method has the following features which make it a state of the art algorithm for texture synthesis: high image quality of the generated textures, very high scalability w.r.t. the output texture size, fast real-time forward generation, the ability to fuse multiple diverse source images in complex textures.To illustrate these capabilities we present multiple experiments with different classes of texture images and use cases. We also discuss some limitations of our method with respect to the types of texture images it can synthesize, and compare it to other neural techniques for texture generation.
Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. There are many methods that can generate good movements when given enough time, but planning for high-dimensional robot configuration spaces in realistic environments with many objects in real time remains challenging. This work presents a novel way for faster movement planning in such environments by predicting good path initializations. We build on our previous work on trajectory prediction by adapting it to environments modeled with voxel grids and defining a frame invariant prototype trajectory space. The constructed representations can generalize to a wide range of situations, allowing to predict good movement trajectories and speed up convergence of robot motion planning. An empirical comparison of the effect on planning movements with a combination of different trajectory initializations and local planners is presented and tested on a Schunk arm manipulation platform with laser sensors in simulation and hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.