The 5-year-long (2001)(2002)(2003)(2004)(2005) studies of the winter thermal structure and the dissolved oxygen (DO) dynamics in Lake Vendyurskoe, Russia, a typical boreal shallow mesotrophic lake of glacial origin, revealed still poorly studied features of lakewide dynamics, such as net lateral heat flux towards deeper parts of a lake and development of the anaerobic zone over the deepest points of the lake basin. We estimated magnitude of the heat transport along the bottom slope based on scaling analysis. The seasonal changes in DO concentration appear to be controlled mostly by biochemical consumption. We identify four factors controlling the extent of anoxic zones in shallow ice-covered lakes: (1) the amount of organic matter stored in the bottom layers, including the sediments surface during the autumnal bloom; (2) the length of the ice-covered period; (3) heat content of bottom sediments; and (4) the initial water temperatures at the time of the ice cover formation.
A field study on current structure and circulation characteristics in Lake Vendyurskoe, a small, shallow, icecovered lake in Karelia, Russia, is presented. The current velocity magnitudes were generally found to be small. The most pronounced currents had an oscillating character, with velocity amplitudes on the order of millimeters per second. The oscillation period, obtained from spectral density calculations, corresponded to that of a barotropic uninodal seiche. The seichelike nature of the current oscillations was supported by the results from analysis of icelevel fluctuations, giving identical periods and a phase shift of one-fourth the period between the two types of oscillations. Mean currents measured during the winter were on the order of millimeters per second. Because Lake Vendyurskoe does not have any significant river inflow or outflow during winter, the most probable cause of these currents is horizontal temperature (pressure) gradients. Scaling analysis indicated that these currents are geostrophic. This was supported by theoretical estimates, based on observed horizontal temperature gradients, being of the same order as the observed currents. The mean current velocities increased considerably after spring convection from
We investigated radiatively driven under-ice convection in Lake Onego (Russia) during 3 consecutive late winters. In ice-covered lakes, where the temperature of water is below the temperature of maximum density, radiatively driven heating in the upper water column induces unstable density distributions leading to gravitational convection. In this work, we quantified the key parameters to characterise the radiatively driven under-ice convection: (1) the effective buoyancy flux, B * (driver), and its vertical distribution; (2) the convective mixed-layer thickness, h CML (depth scale); and (3) the convective velocity, w * (kinematic scale). We compared analytical w * scaling estimates to in situ observations from high-resolution acoustic Doppler current profilers. The results show a robust correlation between w * and the direct observations, except during the onset and decay of the solar radiation. Our results highlight the importance of accurately defining the upper limit of h CML in highly turbid water and the need for spectrally resolving solar radiation measurements and their attenuation for accurate B * estimates. Uncertainties in the different parameters were also investigated. We finally examined the implications of under-ice convection for the growth rate of nonmotile phytoplankton and provide a simple heuristic model as a function of easily measurable parameters.
A field study on the temperature, salt content, and density regime in three shallow ice-covered Karelian lakes is presented. The measurements show that the heat content increases during the whole ice-covered period. At ice formation a weak stable stratification existed in the lakes, with average temperatures about 1°C. Thereafter, the stability of the stratification gradually increased, mainly due to pronounced temperature increases in the bottom layers. In mid-winter the bottom layer in the deep parts of the lakes obtained temperatures above 4°C. The density stratification in these layers was stable, however, due to higher salt contents (increasing continuously during the winter) in the vicinity of the bottom. The horizontal variations in temperature and salt content were very small, and both parameters can be considered to be horizontally homogeneous. Under-ice convection was developed in two of the three investigated lakes during the second half of April, when heating due to penetrating solar radiation became apparent. Although no under-ice convection in the conventional sense occurred in the third lake (Uros), interior convection developed when the temperature exceeded 4°C (the temperature of maximum density) there. The absence of under-ice convection in Lake Uros is most likely due to the higher vertical temperature gradient in the lake before spring heating and smaller extinction coefficient than in the other two lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.