In this paper we consider using the terahertz (THz) time domain spectroscopy (TDS) for non destructive testing and determining the chemical composition of the vanes and rotor-blade spars. A versatile terahertz spectrometer for reflection and transmission has been used for experiments. We consider the features of measured terahertz signal in temporal and spectral domains during propagation through and reflecting from various defects in investigated objects, such as voids and foliation. We discuss requirements are applicable to the setup and are necessary to produce an image of these defects, such as signal-to-noise ratio and a method for registration THz radiation. Obtained results indicated the prospects of the THz TDS method for the inspection of defects and determination of the particularities of chemical composition of aircraft parts.
In this paper, we present a novel numerical approach for increasing the resolution of retrieved images of objects after their diffraction patterns are recorded via terahertz pulse time-domain holography (THz PTDH). THz PTDH allows for spectrally resolved imaging with high spatial resolution and does not require the fine alignment of complex optics in the THz path. The proposed data post-processing method opens up the possibility to reconstruct holograms recorded with spatially restricted THz detectors, and overcome the diffraction limit even for the lower-frequency spectral components. The method involves an iterative procedure of backward-forward wavefront propagation to simulate the field distribution beyond the initially recorded hologram area. We show significant improvement in both the object reconstruction and contrast across the whole spectrum, with qualitative resolution enhancement at lower frequency spectral components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.