Nanomaterials are critical components in the Earth system’s past, present, and future characteristics and behavior. They have been present since Earth’s origin in great abundance. Life, from the earliest cells to modern humans, has evolved in intimate association with naturally occurring nanomaterials. This synergy began to shift considerably with human industrialization. Particularly since the Industrial Revolution some two-and-a-half centuries ago, incidental nanomaterials (produced unintentionally by human activity) have been continuously produced and distributed worldwide. In some areas, they now rival the amount of naturally occurring nanomaterials. In the past half-century, engineered nanomaterials have been produced in very small amounts relative to the other two types of nanomaterials, but still in large enough quantities to make them a consequential component of the planet. All nanomaterials, regardless of their origin, have distinct chemical and physical properties throughout their size range, clearly setting them apart from their macroscopic equivalents and necessitating careful study. Following major advances in experimental, computational, analytical, and field approaches, it is becoming possible to better assess and understand all types and origins of nanomaterials in the Earth system. It is also now possible to frame their immediate and long-term impact on environmental and human health at local, regional, and global scales.
[1] Column experiments were performed to investigate the scale-dependent desorption of uranyl [U(VI)] from a contaminated sediment collected from the Hanford 300 Area at the U.S. Department of Energy (DOE) Hanford Site, Washington. The sediment was a coarse-textured alluvial flood deposit containing significant mass percentage of river cobble. U(VI) was, however, only associated with its minor fine-grained (<2 mm) mass fraction. U(VI) desorption was investigated both from the field-textured sediment using a large column (80 cm length by 15 cm inner diameter) and from its <2 mm U(VI)-associated mass fraction using a small column (10 cm length by 3.4 cm inner diameter). Dynamic advection conditions with intermittent flow and stop-flow events of variable durations were employed to investigate U(VI) desorption kinetics and its scale dependence. A multicomponent kinetic model that integrated a distributed rate of mass transfer with surface complexation reactions successfully described U(VI) release from the fine-grained U(VI)-associated materials. The field-textured sediment in the large column displayed dual-domain tracer-dependent mass transfer properties that affected the breakthrough curves of bromide, pentafluorobenzoic acid (PFBA), and tritium. The tritium breakthrough curve showed stronger nonequilibrium behavior than did PFBA and bromide and required a larger immobile porosity to describe. The dual-domain mass transfer properties were then used to scale the kinetic model of U(VI) desorption developed for the fine-grained materials to describe U(VI) release and reactive transport in the field-textured sediment. Numerical simulations indicated that the kinetic model that was integrated with the dual-domain properties determined from tracer PFBA and Br best described the experimental results. The kinetic model without consideration of the dual-domain properties overpredicted effluent U(VI) concentrations, while the model based on tritium mass transfer underpredicted the rate of U(VI) release. Overall, our results indicated that the kinetics of U(VI) release from the field-textured sediment were different from that of its fine-grained U(VI)-associated mass fraction. However, the desorption kinetics measured on the U(VI)-containing mass fraction could be scaled to describe U(VI) reactive transport in the contaminated field-textured sediment after proper consideration of the physical transport properties of the sediment. The research also demonstrated a modeling approach to integrate geochemical processes into field-scale reactive transport models.Citation: Liu, C., J. M. Zachara, N. P. Qafoku, and Z. Wang (2008), Scale-dependent desorption of uranium from contaminated subsurface sediments, Water Resour. Res., 44, W08413,
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.
Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to physical isolation and chemical stabilization at the organic–mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic–mineral interactions remains largely qualitative. Here we report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities and soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that chemistry of both the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo–mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.