Low-salinity water (LSW) flooding has been applied in sandstone and carbonate formations to improve oil recovery. Wettability alteration by LSW has been identified as the dominant driving mechanism for the incremental oil recoveries. LSW flooding has been combined with other EOR methods to develop new hybrid approaches to improve crude/brine/rock (CBR) interactions with the objective of overcoming some of the LSW flooding downsides, which include oil trapping and fine migration. Hybrid methods can provide higher oil recovery than each stand-alone technique. For instance, changes in gas solubility during LSW injection positively affect the performance of LSW/gas hybrid injection. LSW/surfactant flooding can contribute to incremental recovery by simultaneously lowering interfacial tension (IFT) and wettability alteration. The synergistic effect of fluid redistribution by LSW and enhanced water mobility by polymer flooding improves oil detachment and displacement in porous media through the application of the hybrid approach LSW/polymer flooding. Nanoparticles (NPs), mainly SiO 2 , can alter wettability toward more water wetness in combination with LSW, and hot LSW can improve heavy oil production by reducing viscosity. Hence, the synergistic effect of hybrid EOR methods based on LSW flooding is considered a novel EOR approach to improve oil recovery.
Different oil displacement experiments conducted on sandstone and carbonate samples show that low salinity water (LSW) injection can reduce the residual oil saturation (ROS). Recently, surfactant flooding (SF) in combination with low salinity water (known as low salinity surfactant (LSS) flooding) is proposed as a potentially promising hybrid enhanced oil recovery (EOR) process. A lower ROS is reported for a LSS process compared to that seen in SF or with LSW at the same capillary number. The capillary desaturation curve (CDC) is a well-known tool to study the effect of viscous and capillary forces on ROS for different EOR techniques. In this study, ROS data of various LSW, SF, and LSS flooding experiments at different capillary numbers are collected to develop a CDC to analyze the performance of the hybrid LSS method. This can help to analyze the effect of the hybrid method on an extra improvement in sweep efficiency and reduction in residual oil. A lower ROS is observed for LSS compared to LSW and SF in the same capillary number range. Our study shows different behaviors of the hybrid method at different ranges of capillary numbers. Three regions are identified based on the capillary number values. The difference in ROS is not significant in the first region (capillary number in the range of 10−7–10−5), which is not applicable in the presence of surfactant due to the low interfacial tension value. A significant reduction in ROS is observed in the second region (capillary number in the range of 10−5–10−2) for LSS compared to SF. This region is the most practical range for SF and LSS flooding. Hence, the application of LSS provides a noticeable benefit compared to normal EOR techniques. In the third region (capillary numbers greater than 10−2), where the surfactant flooding is a better performer, the difference in ROS is negligible.
The results of many previous studies
on low salinity/controlled
ions water (CIW) flooding suggest that future laboratory and modeling
investigations are required to comprehensively understand and interpret
the achieved observations. In this work, the aim is co-optimization
of the length of the injected slug and soaking time in the CIW flooding
process. Furthermore, the possibility of the occurrence of several
governing mechanisms is studied. Therefore, the experimental results
were utilized to develop a compositional model, using CMG GEM software,
in order to obtain the relative permeability curves by history matching.
It was concluded that CIW slug
injection, concentrated in the potential-determining ion, can increase
oil recovery under a multi ion exchange (MIE) mechanism. The wettability
of the carbonate rocks was changed from a mixed or oil wet state toward
more water wetness. However, there is a CIW slug length, beyond which
extending the length does not significantly improve the rock wettability,
and consequently, the oil production, which is known as the optimum
slug size. This implies that the optimization of the injection process,
by minimizing the slug size, can decrease the need for the CIW supply,
therefore lowering the process expenditure. Moreover, if the exposure
time of the rock and CIW is increased (soaking), a higher level of
ion substitution is probable, leading to more oil detachment and production.
Rock dissolution/precipitation (leading to a pH change) was found
to have a negligible contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.