Background: Principal components analysis (PCA) is based conventially on the eigenvector decomposition (EVD). Mean-centering the input data prior to the eigenanalysis is treated as an integral part of the algorithm. It ensures that the first principal component is proportional to the maximum variance of the input data. Equivalent to EVD, but numerically more robust, is the singular value decomposition (SVD). Mean-centered data subjected to SVD, yield transformation coefficients identical to EVD. Nevertheless, mean-centering is optional in SVD. Avoiding to center the input data, results in generic first component that mainly reflects their mean. This may, however, detect more accurately distinct clusters in PCA-based change detection applications. Methods: In remote sensing, PCA transforms multi-spectral bands into a new coordinate system. The first, among the transformed components, contain the variance of unchanged landscape features. Succeeding components may contain an enhanced variance of changed features. Such is the case of burned surfaces appearing as distinct clusters in multitemporal composites. Conclusions: Within this framework, a non-centered SVD may increase the spectral separability of burned clusters among other features in some of the higher order principal components.
Background: Singular value decomposition (SVD), as an alternative solution to principal components analysis (PCA), may enhance the spectral profile of burned areas in satellite image composites. Methods: In this regard, we combine the pre-processing options of centering, non-centering, scaling, and non-scaling the input multi-spectral data, prior to the matrix decomposition, and treat their combinations as four different SVD-based PCA versions. Using both unitemporal and bi-temporal data sets, we test all four combinations to derive principal components. We assess the effects of the transformations based on multiresponse permutation procedures and quantify the enhanced spectral separability between burned areas and other major land cover classes via the Jeffries-Matusita metric. Lastly, we evaluate visually and numerically all principal components and select a subset of interest. Results: The best transformation for the subset of selected components, is the uncentered-unscaled one. Conclusions: The results indicate that an uncentered and unscaled SVD may improve the spectral separability of burned areas in some of the higher order components.
<p>The frequency of extreme heat related events is rising. This places the ever growing number of urban dwellers at higher risk. Quantifying these phenomena is important for the development and monitoring of climate change adaptation and mitigation policies. In this context, earth observations offer increasing opportunities to assess these phenomena with an unprecedented level of accuracy and spatial reach. Satellite thermal imaging systems acquire Land Surface Temperature (LST) which is fundamental to run models that study for example hotspots and heatwaves in urban environments.</p><p>Current instruments include TIRS on board Landsat 8 and MODIS on board of Terra satellites. These provide LST products on a monthly basis at 100m and twice per day at 1km respectively. Other sensors on board geostationary satellites, such as MSG and GOES-R, produce sub-hourly thermal images. For example the SEVIRI instrument onboard MSG, captures images every 15 minutes. However, this is done at an even coarser spatial resolution, which is 3 to 5 km in the case of SEVIRI. Nevertheless, none of the existing systems can capture LST synchronously with fine spatial resolution at a high temporal frequency, which is a prerequisite for monitoring heat stress in urban environments.</p><p>Combining LST time series of high temporal resolution (i.e. sub-daily MODIS- or SEVIRI-derived data) with products of fine spatial resolution (i.e. Landsat 8 products), and potentially other related variables (i.e. reflectance, spectral indices, land cover information, terrain parameters and local climatic variables), facilitates the downscaling of LST estimations. Nonetheless, considering the complexity of how distinct surfaces within a city heat-up differently during the course of a day, such a downscaling is meaningful for practically synchronous observations (e.g. Landsat-8 and MODIS Terra&#8217;s morning observations).</p><p>The recently launched ECOSTRESS mission provides multiple times in a day high spatial resolution thermal imagery at 70m. Albeit, recording the same locations on Earth every few days at varying times. We explore the associations between ECOSTRESS and Landsat-8 thermal data, based on the incoming radiation load and distinct surface properties characterised from other datasets. In our approach, first we upscale ECOSTRESS data to simulate Landsat-8 images at moments that coincide the acquisition times of other sensors products. In a second step, using the simulated Landsat-8 images, we downscale LST products acquired at later times, such as MODIS Aqua (ca. 13:30) or even the hourly MSG data. This composite downscaling procedure enables an enhanced LST estimation that opens the way for better diagnostics of the heat stress in urban landscapes.</p><p>In this study we discuss in detail the concepts of our approach and present preliminary results produced with the JEODPP, JRC's high throughput computing platform.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.