The zebrafish regenerates its brain after injury and hence is a useful model organism to study the mechanisms enabling regenerative neurogenesis, which is poorly manifested in mammals. Yet the signaling mechanisms initiating such a regenerative response in fish are unknown. Using cerebroventricular microinjection of immunogenic particles and immunosuppression assays, we showed that inflammation is required and sufficient for enhancing the proliferation of neural progenitors and subsequent neurogenesis by activating injury-induced molecular programs that can be observed after traumatic brain injury. We also identified cysteinyl leukotriene signaling as an essential component of inflammation in the regenerative process of the adult zebrafish brain. Thus, our results demonstrate that in zebrafish, in contrast to mammals, inflammation is a positive regulator of neuronal regeneration in the central nervous system.
The adult zebrafish brain, unlike mammalian counterparts, can regenerate after injury owing to the neurogenic capacity of stem cells with radial glial character. We hypothesized that injury-induced regenerative programs might be turned on after injury in zebrafish brain and enable regenerative neurogenesis. Here we identify one such gene-the transcription factor gata3-which is expressed only after injury in different zebrafish organs. Gata3 is required for reactive proliferation of radial glia cells, subsequent regenerative neurogenesis, and migration of the newborn neurons. We found that these regeneration-specific roles of Gata3 are dependent on the injury because Gata3 overexpression in the unlesioned adult zebrafish brain is not sufficient to induce neurogenesis. Thus, gata3 acts as a specific injury-induced proregenerative factor that is essential for the regenerative capacity in vertebrates.
Inflammation entails a complex set of defense mechanisms acting in concert to restore the homeostatic balance in organisms after damage or pathogen invasion. This immune response consists of the activity of various immune cells in a highly complex manner. Inflammation is a double-edged sword as it is reported to have both detrimental and beneficial consequences. In this review, we discuss the effects of inflammation on stem cell activity, focusing primarily on neural stem/progenitor cells in mammals and zebrafish. We also give a brief overview of the effects of inflammation on other stem cell compartments, exemplifying the positive and negative role of inflammation on stemness. The majority of the chronic diseases involve an unremitting phase of inflammation due to improper resolution of the initial pro-inflammatory response that impinges on the stem cell behavior. Thus, understanding the mechanisms of crosstalk between the inflammatory milieu and tissue-resident stem cells is an important basis for clinical efforts. Not only is it important to understand the effect of inflammation on stem cell activity for further defining the etiology of the diseases, but also better mechanistic understanding is essential to design regenerative therapies that aim at micromanipulating the inflammatory milieu to offset the negative effects and maximize the beneficial outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.