The environmental and biodiversity benefits of organic farming are widely recognized, but there is still controversy about the effects of organic production methods on the nutritional composition of food and human health. In the first part of this article therefore, we critically review the evidence that organic farming methods improve the nutritional quality of food crops. Moreover, we summarize our current understanding of how quality gains are linked to the implementation of the “innovations” introduced into conventional crop production during the intensification or “green revolution” of agriculture over the last 100 years. In the second part of the article, we critically review the evidence for the range of health benefits related to organic food consumption. Specifically, we describe and discuss the results from: (i) dietary intervention studies which have found that organic food consumption substantially reduces pesticide exposure in humans and affects feed intake, growth, hormone balances and immune system responsiveness in animal models; (ii) human cohort/epidemiological studies which have reported significant positive associations between organic food consumption and the lower incidence of a range of diseases including obesity, metabolic syndrome, cancer, hypospadias, pre-eclampsia, eczema and middle ear infections in infants; (iii) interactions and trade-offs between diet (e.g., whole-grain, fruit and vegetables and reduced red-meat consumption) and food types (organic versus conventional) concerning public health and future food security. The article also identifies knowledge gaps and highlights the need for (i) long-term, factorial field experiments to understand the relative effects of agronomic and pedoclimatic drivers on crop quality and safety, and (ii) clinical trials and additional human cohort studies to confirm the positive health outcomes linked to organic food consumption. The main conclusions from our review are that there is growing evidence that (i) agricultural intensification has resulted in a reduction in the nutritional quality of food and the sustainability of food production, and (ii) organic farming practices not only improve food quality and human health, but also food security. This is particularly true where current nutritional guidelines (increasing whole-grain, fruit and vegetable products, while reducing red-meat consumption) are implemented.
The effects of organic versus conventional crop management practices (crop rotation, crop protection, and fertility management strategies) on wheat yields and grain metal (Al, Cd, Cu, Ni, Pb, and Zn) concentrations were investigated in a long-term field trial. The interactions between crop management practices and the season that the crop was grown were investigated using univariate and redundancy analysis approaches. Grain yields were highest where conventional fertility management and crop protection practices were used, but growing wheat after a previous crop of grass/clover was shown to partially compensate for yield reductions due to the use of organic fertility management. All metals except for Pb were significantly affected by crop management practices and the year that the wheat was grown. Grain Cd and Cu levels were higher on average when conventional fertility management practices were used. Al and Cu were higher on average when conventional crop protection practices were used. The results demonstrate that there is potential to manage metal concentrations in the diet by adopting specific crop management practices shown to affect crop uptake of metals.
Summary
Risks from pathogens such as Salmonella, Yersinia, Campylobacter and Escherichia coli O157 have been identified as a particular concern for organic and ‘low input’ food production systems that rely on livestock manure as a nutrient source. Current data do not allow any solid conclusions to be drawn about the level of this risk, relative to conventional production systems. This review describes six Risk Reduction Points (RRPs) where risks from enteric pathogens can be reduced in ready‐to‐eat vegetables. Changes can be made to animal husbandry practices (RRP1) to reduce inoculum levels in manure. Outdoor livestock management (RRP2) can be optimized to eliminate the risk of faecal material entering irrigation water. Manure storage and processing (RRP3), soil management practices (RRP4) and timing of manure application (RRP5), can be adjusted to reduce the survival of pathogens originating from manure. During irrigation (RRP6), pathogen risks can be reduced by choosing a clean water source and minimizing the chances of faecal material splashing on to the crop. Although preventive measures at these RRPs can minimize enteric pathogen risk, zero risk can never be obtained for raw ready‐to‐eat vegetables. Good food hygiene practices at home are essential to reduce the incidence of food‐borne illnesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.