We suggest semi-analytical approach to study the optical properties of noble metal nanoparticles and their interaction to the perovskite material (methyl ammonia lead halide: CH 3 NH 3 PbI 3 ). Metal nanoparticles embedded in perovskite matrix exhibits broadband surface plasmon resonances, and the tunability of these plasmonic resonances is highly sensitive to particle size. The calculation of optical cross section have been done using Mie scattering theory which is applicable to arbitrary size and spherical-shape metal nanoparticles. We have taken five different radii ranging from 15 to 100 nm to understand the plasmonic resonances and its spectral width in the wavelength range 300 to 800 nm. Out of these noble metal nanoparticles, silver have highest scattering efficiency nearly of the order of 18 for the case of 15 nm radii at resonance wavelength 613 nm. Our finding reveals a new concept to understand the applications of plasmonic resonances in order to enhance the photon absorption inside the thin film of perovskite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.