Renewable energy resources are in high demand to decrease dependence on fossil fuels and mitigate greenhouse gas emissions. Biofuel industries, particularly bioethanol and biodiesel, have been rapidly increasing in tandem with agricultural production over more than a decade. First-generation biofuel manufacturing is heavily reliant on agriculture food sources like maize, sugarcane, sugar beets, soybeans, and canola. As a result, the intrinsic competitiveness among foods and fuels has been a point of contention in community for the past couple of years. Existing technological advancements in research and innovation have paved the way for the manufacturing of next-generation biofuels from a variety of feedstock’s, including agricultural waste materials, crops remnants and cellulosic biomass from high-yielding trees and bushes varieties. This report discusses the existing state of second-generation biofuel manufacturing as well as the feedstock utilized in fuel production, biofuel production globally and the current situation in India. This study also explores the current advancements in the findings and advancement of second-generation biofuel extraction from various feedstock’s. The forthcoming directions of agriculture and energy industrial sectors has also been addressed in order to feed the world 's growing population and to fuel the world's most energy-intensive industry, transportation.
Biodegradable materials have various advantages compared to nonbiodegradable materials. Developing implants using biodegradable materials eliminates the need for secondary surgery, improves mechanical and biological properties, and improves biocompatibility. Magnesium (Mg) and its alloys are frequently used in orthopedic applications nowadays. However, the rapid degradation of Mg poses a substantial challenge. As a result, for the bone to heal properly, a proper balance between implant degeneration rate and bone healing must be obtained. Mg has certain other drawbacks, such as the need for an inert atmosphere when employing powder metallurgy and casting procedures to manufacture it because of its reactive nature. In this paper, Additive manufacturing (AM) techniques for manufacturing orthopedic biodegradable implants made of Mg and its alloys are discussed which helps in obtaining improved biological and mechanical properties of the implants. These orthopedic implants should have a controlled rate of degradation and antibacterial functional surfaces. There is also a description of the use of several AM processes utilized to enhance the mechanical and biological characteristics of implants employing Mg. This paper also seeks to present the concept of integrating established techniques into a production process to obtain the needed biodegradable implant material for orthopedic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.