During plastic deformation, metal surfaces roughen and this has a deleterious impact on their tribological performance. It is therefore desirable to be able to predict and control the amount of roughening caused by subsurface plasticity. As a first step, we focus on modelling plastic deformation during contact shearing of an FCC metallic single crystal, employing a finite strain Discrete Dislocation Plasticity (DDP) formulation. This formulation allows us to capture the finite lattice rotations induced in the material by shearing and the corresponding local rotation of the crystallographic slip planes. The simulations predict a pronounced material pileup in front of the contact and a sink-in at its rear, which are strongly crystal-orientation dependent. By comparing finite and small strain DDP, we can assess the effect of slip plane rotation on surface roughening and on metal plasticity in general. Results of the simulations are also compared with crystal plasticity, which is also capable of predicting a pileup and sink-in, but not the crystal-orientation dependency of roughening.
The relative contact area of rough surface contacts is known to increase linearly with reduced pressure, with proportionality factor . In its common definition, the reduced pressure contains the root-mean-square gradient (RMSG) of the surface. Although easy to measure, the RMSG of the entire surface does not coincide, at small loads, with the RMSG over the actual contact area , which gives a better description of the contact between rough surfaces. It was recently shown that, for Hertzian contacts, linearity between area and load is indeed obtained only if the RMSG is determined over the actual contact area. Similar to surface contacts, in line contacts, numerical data are often studied using theories that predict linearity by design. In this work, we revisit line contact problems and examine whether or not the assumption of linearity for line contacts holds true. We demonstrate, using Green’s function molecular dynamics simulations, that for line contacts is not a constant: It depends on both the reduced pressure and the Hurst exponent. However, linearity holds when the RMSG is measured over the actual contact area. In that case, we could compare for line and surface contacts and found that their ratio is approximately 0.9. Finally, by analytically deriving the proportionality factor using in the original model of Greenwood and Williamson, a value is obtained that is surprisingly in good agreement with our numerical results for rough surface contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.