The purpose of this review is to describe the landscape of scientific literature enriched by an author’s keyword analysis to develop and test blockchain’s capabilities for enhancing supply chain resilience in times of increased risk and uncertainty. This review adopts a dynamic quantitative bibliometric method called systematic literature network analysis (SLNA) to extract and analyze the papers. The procedure consists of two methods: a systematic literature review (SLR) and bibliometric network analysis (BNA). This paper provides an important contribution to the literature in applying blockchain as a key component of cyber supply chain risk management (CSRM), manage and predict disruption risks that lead to resilience and robustness of the supply chain. This systematic review also sheds light on different research areas such as the potential of blockchain for privacy and security challenges, security of smart contracts, monitoring counterfeiting, and traceability database systems to ensure food safety and security.
Over the last few years, the increasing level of cyber risks derived from the growing connectedness of Industry 4.0 has led to the emergence of blockchain technology as a major innovation in supply chain cybersecurity. The main purpose of this study is to identify and rank the significant barriers affecting the implementation of blockchain technology as a key component of cyber supply chain risk management (CSCRM). This research relied on the “interpretive structural modeling (ISM)” technique in the structure of a hierarchical model to investigate the contextual relationships of identified challenges for blockchain adoption in CSCRM; it also classifies the influential challenges based on their driving and dependence powers. The results highlight that “cryptocurrency volatility” is the challenge at the top level of the hierarchy, implying weak driving power but it is strongly dependent on the other challenges. “Poor regulatory provisions”, “technology immaturity”, “dependent on input information from external oracles”, “scalability and bandwidth issues”, and “smart contract issues” are significant challenges for the adoption of blockchain in cyber supply chain risk management and are located at the bottom level of the hierarchy with higher driving power. The implications for theory and practice of the research are also highlighted.
The objective of this study is to evaluate, in vitro, the microleakage of bacteria of 3 different implant connections for a period of 14 days. 60 dental implants (AoN) (n = 20) were distinguished into three groups, accordingly to the type of connection: External Hexagon (EH), Internal Hexagon (IH), and Cone Morse (CM) connection. All implants were inserted and fixed on sterile special vinyl support. Ten fixtures for each group were inoculated in the internal platform with 1.0 μL of Streptococcus oralis (SO) and the other ten with the same amount of Pseudomonas aeruginosa (PA). The penetration of bacterial suspension into the surrounding solution was determined by the observation of the turbidity of the broth. Five implants for each sub-group were randomly observed at SEM, to verify the correct fitting of the abutments. Considering the total of the samples analyzed, CM showed significantly lower bacterial contamination, with respect to IH. In particular, bacterial contamination was found in 45%, 55%, and 20% of EH, IH, and CM, respectively. Analyzing results for the type of inoculated bacteria, P. aeruginosa showed a higher ability to contaminate all the connections, with respect to S. oralis.
The growth of the enterprise blockchain research supporting supply chain management calls for investigations of their impact and mindfulness of their design, use cases, and pilots. With a blockchain design for the Proof of Delivery (PoD) process management, this paper contributes to learning about performance measurement and the transaction costs implications during the development and application of smart contracts. An experimental design science approach is applied to develop an open-source blockchain to explore ways to make the delivery processes more efficient, the proof of delivery more reliable, and the performance measurements more accurate. The theory of Transaction Costs is applied to evaluate the cost implications of the adoption of smart contracts in the management of the PoD. The findings show that smart contracts make the delivery processes more efficient and proof of delivery more reliable. Yet, the methods and metrics are too complex and qualitative, limiting the smart contract's capability to measure performance. Our findings indicate potential transaction costs reduction by implementing a blockchainbased performance measurement. The complexities of the delivery process and proof of delivery call for precontractual steps to identify the processes and performance metrics to design blockchains. Smart contracts need further development and digital aids to handle qualitative inspections and proof of delivery generation during the delivery process. The blockchain requires the system's capacity to record off-chain transactions, such as in case of disputes resolutions. The authors extended blockchain research beyond the theoretical level, designing an open-source blockchain for supply chain management within the use case, pilot design, and case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.