In September 2017, an outbreak with high mortality, which showed the typical signs of ND, occurred among a flock of more than 2000 Eurasian collared doves in Konarak, southeast of Iran. A confirmed pigeon paramyxovirus type 1 strain was isolated from the brain tissues of the dead doves. The isolate, which was called Pigeon/Iran/Konarak/Barin/2017, was classified as a highly velogenic NDV. Complete genome sequencing and phylogenetic analysis showed that the isolate belonged to subgenotype XXI.2, which has never been reported from Iran before. The isolate had the highest homology (96.15%) with early 2010s Italian isolates. Further studies will be required to understand the diversity better.
Malaria is the most pernicious parasitic infection, and Plasmodium falciparum is the most virulent species with substantial morbidity and mortality worldwide. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the 14 blood-stage proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, various web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physicochemical properties, posttranslational modification sites (PTMs), the presence of signal peptide, and transmembrane domains. Moreover, structural analysis for secondary and 3D model predictions were performed for all and stable proteins, respectively. Finally, human helper T lymphocyte (HTL) epitopes were predicted using HLA reference set of IEDB server and screened in terms of antigenicity, allergenicity, and IFN-γ induction as well as population coverage. Also, a multiserver B-cell epitope prediction was done with subsequent screening for antigenicity, allergenicity, and solubility. Altogether, these proteins showed appropriate antigenicity, abundant PTMs, and many B-cell and HTL epitopes, which could be directed for future vaccination studies in the context of multiepitope vaccine design.
Guizotia abyssinica (L.f.) Cass. (niger), an important oil seed crop grown in India, is used in foods, paints, soaps, and as an illuminant. During a survey conducted in 2004 to monitor Tobacco streak virus (TSV) in Helianthus annuus L. (sunflower) and Arachis hypogaea L. (groundnut), typical symptoms of leaf and petiole necrosis were observed in niger plants from Karnataka State, India. The field-collected samples reacted with TSV-specific polyclonal antiserum in direct antigen coated (DAC)-ELISA. Indicator host species were mechanically inoculated with extracts from symptomatic leaves and grown under greenhouse conditions. The inoculations resulted in local necrotic lesions on Vigna unguiculata cv. C-152 (cowpea), Gomphrena globosa, and Nicotiana tabacum cv. Xanthi (tobacco) at 3 to 4 days postinoculation (dpi) and systemic mosaic mottling on sunflower and G. globosa at 7 to 9 dpi. To identify the virus at the molecular level, total RNA was isolated (RNeasy kit, Qiagen Inc., Chatsworth, CA) from the virus-inoculated cowpea leaf and used for reverse transcription-PCR using TSV CP (coat protein) specific primers (2). The resulting ~720-bp amplicon corresponding to the CP gene of TSV was cloned into pGem-T vector (Promega, Madison, WI) and sequenced. The resulting sequence of the TSV-niger isolate (TSV-NG) comprised 717 nucleotides encoding 238 amino acid residues of the viral coat protein (GenBank Accession No. DQ864458). Comparison of the sequence with those of other TSV CP gene indicated 98.5 to 99.3% nucleotide and 97.9 to 99.6% amino acid sequence identity with TSV isolates from India (1,2; GenBank Accession Nos. AF505073, AY061930, AY061929, AF515823, AF515824, and AF515825). The sequence of TSV-NG had 89.5 and 80.0% amino acid identity with TSV-WC, type strain from the United States (GenBank Accession No. X00435) and TSV-BR, isolate from Brazil (GenBank Accession No. AY354406), respectively. On the basis of symptoms, transmission, and serological and molecular data, the causal agent of necrosis in niger was identified as a strain of TSV widely prevalent in other oil seed and vegetable crops in India. The new report of Tobacco streak virus infecting niger from India, indicated the expansion of host range among oil seed crops. References: (1) A. I. Bhat et al. Indian J Biotechnol. 1:350, 2002. (2) K. S. Ravi et al. Plant Pathol. 50:800, 2001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.