Handedness is frequently measured with sum scores or quotients taken from laterality questionnaires like the Edinburgh Handedness Inventory (EHI). In classical test theory such data cannot be used to confirm either the unidimensionality (i.e., quantitative differentiation with the poles left-handed and right-handed) or multidimensionality (i.e., typological differentiation between left-, right-, and mixed-handers) of this personal characteristic. This study uses item response theory models to test the construct validity of the EHI on an item level in order to gather empirical support for the differentiation of handedness as well as the appropriateness of the items and the response format. The EHI was given to 540 participants (303 male and 237 female) aged 17-37 years. Results of mixed-Rasch analyses revealed that the best model was a two-class solution; that is, left- and right-handers (types) with quantitative differences between persons. Hence, unlike earlier model tests, this rejects both the unidimensionality of the handedness construct and the need to consider so-called mixed-handers. It is proposed that mixed-Rasch analyses should be applied more frequently to test the construct validity of other as well as more extensive handedness questionnaires.
Zusammenfassung. Das Lateral Preference Inventory (LPI, Coren, 1993 ) soll die bevorzugte Seite für die Dimensionen Händigkeit, Füßigkeit, Äugigkeit und Ohrigkeit ermitteln. In dieser Pilotstudie wurde mit N = 540 Versuchspersonen (n = 303 männlich, n = 237 weiblich) im Alter von 17 bis 37 Jahren (M = 22.1, SD = 2.7) die Konstruktvalidität auf Itemebene (Itemhomogenität) der deutschen Version des LPI untersucht. Die Seitigkeitsdimensionen wurden inferenzstatistisch mit dem ordinalen Mixed-Rasch-Modell und dem latenten Klassenmodell überprüft. Erst die Eliminierung der Antwortkategorie „egal” führt zu einer zufriedenstellenden Konstruktvalidität auf Itemebene. Für die Seitigkeitsdimensionen lässt sich jeweils eine 2-Klassen-Lösung ermitteln, mit der Personen in Rechtstypen und Mischtypen eingeteilt werden können. Abschließend werden Empfehlungen zur Verbesserung des LPI aufgezeigt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.