Malignant cells, like all actively growing cells, must maintain their telomeres, but genetic mechanisms responsible for telomere maintenance in tumors have only recently been discovered. In particular, mutations of the telomere binding proteins alpha thalassemia/ mental retardation syndrome X-linked (ATRX) or death-domain associated protein (DAXX) have been shown to underlie a telomere maintenance mechanism not involving telomerase (alternative lengthening of telomeres), and point mutations in the promoter of the telomerase reverse transcriptase (TERT) gene increase telomerase expression and have been shown to occur in melanomas and a small number of other tumors. To further define the tumor types in which this latter mechanism plays a role, we surveyed 1,230 tumors of 60 different types. We found that tumors could be divided into types with low (<15%) and high (≥15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker that may be useful for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.
Human myxoid liposarcomas contain a characteristic chromosomal translocation, t(12;16)(q13;p11), that is associated with a structural rearrangement of the gene encoding CHOP, a growth arrest and DNA-damage inducible member of the C/EBP family of transcription factors residing on 12q13.1. Using a CHOP-specific complementary probe and antiserum we report here the presence of an abnormal CHOP transcript and protein in these tumours. Cloning of the translocation-associated CHOP gene product revealed a fusion between CHOP and a gene provisionally named TLS (translocated in liposarcoma). TLS is a novel nuclear RNA-binding protein with extensive sequence similarity to EWS, the product of a gene commonly translocated in Ewing's sarcoma. In TLS-CHOP the RNA-binding domain of TLS is replaced by the DNA-binding and leucine zipper dimerization domain of CHOP. Targeting of a conserved effector domain of RNA-binding proteins to DNA may play a role in tumour formation.
Alveolar soft part sarcoma (ASPS) is an unusual tumor with highly characteristic histopathology and ultrastructure, controversial histogenesis, and enigmatic clinical behavior. Recent cytogenetic studies have identi®ed a recurrent der(17) due to a non-reciprocal t(X;17)(p11.2;q25) in this sarcoma. To de®ne the interval containing the Xp11.2 break, we ®rst performed FISH on ASPS cases using YAC probes for OATL1 (Xp11.23) and OATL2 (Xp11.21), and cosmid probes from the intervening genomic region. This localized the breakpoint to a 160 kb interval. The prime candidate within this previously fully sequenced region was TFE3, a transcription factor gene known to be fused to translocation partners on 1 and X in some papillary renal cell carcinomas. Southern blotting using a TFE3 genomic probe identi®ed non-germline bands in several ASPS cases, consistent with rearrangement and possible fusion of TFE3 with a gene on 17q25. Ampli®cation of the 5' portion of cDNAs containing the 3' portion of TFE3 in two di erent ASPS cases identi®ed a novel sequence, designated ASPL, fused in-frame to TFE3 exon 4 (type 1 fusion) or exon 3 (type 2 fusion). Reverse transcriptase PCR using a forward primer from ASPL and a TFE3 exon 4 reverse primer detected an ASPL-TFE3 fusion transcript in all ASPS cases (12/12: 9 type 1, 3 type 2), establishing the utility of this assay in the diagnosis of ASPS. Using appropriate primers, the reciprocal fusion transcript, TFE3-ASPL, was detected in only one of 12 cases, consistent with the non-reciprocal nature of the translocation in most cases, and supporting ASPL-TFE3 as its oncogenically signi®cant fusion product. ASPL maps to chromosome 17, is ubiquitously expressed, and matches numerous ESTs (Unigene cluster Hs.84128) but no named genes. The ASPL cDNA open reading frame encodes a predicted protein of 476 amino acids that contains within its carboxy-terminal portion of a UBXlike domain that shows signi®cant similarity to predicted proteins of unknown function in several model organisms. The ASPL-TFE3 fusion replaces the N-terminal portion of TFE3 by the fused ASPL sequences, while retaining the TFE3 DNA-binding domain, implicating transcriptional deregulation in the pathogenesis of this tumor, consistent with the biology of several other translocationassociated sarcomas. Oncogene (2001) 20, 48 ± 57.
Dermatofibrosarcoma protuberans (DP), an infiltrative skin tumour of intermediate malignancy, presents specific features such as reciprocal translocations t(17;22)(q22;q13) and supernumerary ring chromosomes derived from the t(17;22). In this report, the breakpoints from translocations and rings in DP and its juvenile form, giant cell fibroblastoma (GCF), were characterised on the genomic and RNA level. These rearrangements fuse the platelet-derived growth factor B-chain (PDGFB, c-sis proto-oncogene) and the collagen type I alpha 1 (COL1A1) genes. PDGFB has transforming activity and is a potent mitogen for a number of cell types, but its role in oncogenic processes is not fully understood. COL1A1 is a major constituent of the connective tissue matrix. Neither PDGFB nor COL1A1 have so far been implicated in any tumour translocations. These gene fusions delete exon 1 of PDGFB, and release this growth factor from its normal regulation.
Although mechanisms for chromosomal instability in tumors have been described in animal and in vitro models, little is known about these processes in man. To explore cytogenetic evolution in human tumors, chromosomal breakpoint profiles were constructed for 102 pancreatic carcinomas and 140 osteosarcomas, two tumor types characterized by extensive genomic instability. Cases with few chromosomal alterations showed a preferential clustering of breakpoints to the terminal bands, whereas tumors with many changes showed primarily interstitial and centromeric breakpoints. The terminal breakpoint frequency was negatively correlated to telomeric TTAGGG repeat length, and fluorescence in situ hybridization with telomeric TTAGGG probes consistently indicated shortened telomeres and >10% of chromosome ends lacking telomeric signals. Because telomeric dysfunction may lead to formation of unstable ring and dicentric chromosomes, mitotic figures were also evaluated. Anaphase bridges were found in all cases, and fluorescence in situ hybridization demonstrated extensive structural rearrangements of chromosomes, with terminal transferase detection showing fragmented DNA in 5-20% of interphase cells. Less than 2% of cells showed evidence of necrosis or apoptosis, and telomerase was expressed in the majority of cases. Telomeric dysfunction may thus trigger chromosomal fragmentation through persistent bridge-breakage events in pancreatic carcinomas and osteosarcomas, leading to a continuous reorganization of the tumor genome. Telomerase expression is not sufficient for completely stabilizing the chromosome complement but may be crucial for preventing complete genomic deterioration and maintaining cellular survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.