Human cadaveric skin allografts are used in the treatment of burns and can be preserved in glycerol at high concentrations. Previously, glycerol has been attributed some antimicrobial effect. In an experimental set-up, we aimed at investigating this effect of prolonged incubation of bacteria in 85% glycerol. Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis were incubated in 85% glycerol. The influence of duration of incubation and temperature on ultrastructure and viability were investigated. Unstressed cultures served as controls. Survival was studied after 24-36 h and 10 days incubation in 85% glycerol at 48C and 368C with transmission electron microscopy~TEM! and flow cytometry using viability stains indicating membrane damage~SYTO9, propidium iodide! or esterase activity~carboxyfluores-cein diacetate!. TEM clearly demonstrated variability in morphological changes of bacteria suggesting different mechanisms of damage. Viability stains supported these findings with faster declining viable cell populations in 85% glycerol at 368C compared with 48C. Both methods demonstrated that Gram-negative species were more susceptible than Gram-positive species. In conclusion, 85% glycerol may have some additional antimicrobial effect. Temperature is an important factor herein and Gram-negatives are most susceptible. The latter finding probably reflects the difference in cell wall composition between Gram-positive and Gram-negative bacteria.
Maize white spot (MWS) caused by Pantoea ananatis is one main maize leaf diseases, and nanoparticles (NPs) are an innovative approach for bacterial disease control. This research evaluated the toxicity of pure NPs and doped NPs with different elements in inhibiting bacterial growth and to control MWS. Pure NPs and ZnO NPs doped with silver (Ag), gold (Au), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) at different concentrations were used to determine the toxicity for P. ananatis in vitro, evaluating the bacterial growth inhibition zone. To assess the control of MWS, in the preventive application, maize plants were sprayed with NPs of ZnO:0.1Cu, ZnO:0.05Fe, ZnO:0.2Mn and ZnO:0.7Ni at 10, 5 or 2.5 mg mL-1, and after 3 days, the plants were inoculated with bacterial suspension. To assess the curative application, plants were inoculated with the bacteria, and 3 days later sprayed with the NPs. The disease severity was assessed and the area under the disease-progress curve (AUDPC) was calculated. The doped ZnO NPs with different elements, and at different concentrations inhibited bacterial growth in vitro. NPs of ZnO:0.1Cu and ZnO:0.2Mn at 5 or 2.5 mg mL-1, in both applications reduced the severity of MWS, showing potential for use in the disease management.
Melon and watermelon bacterial fruit blotch, incited by Acidovorax citrulli, is limited to some areas in Brazil but causes important losses, mainly in melon-producing regions. Although genetic diversity has been observed among strains belonging to the species, they are considered a homogeneous group based on the fact that they show only slight physiological or nutritional differences. The objective of this study was to compare Brazilian strains from melon and watermelon by means of biochemical, pathogenicity, serological and molecular assays. Fifteen biochemical tests, cross inoculation between strains and hosts, ELISA and repetitive sequence analysis (rep-PCR) with the primers REP, ERIC and BOX were conducted. No differences were revealed by nutritional characterization or serology, but cross inoculation showed different pathogenicity groups, which could explain high aggressiveness of the bacteria to melon crops in some regions. Molecular analysis by BOX-PCR clustered strains according to their geographical origin, while ERIC-and REP-PCR, analyzed together, indicated genetic diversity, but without geographical or host origin relationships. One test that could be used to verify the pathogenicity of strains by inoculating detached leaf petioles, showing results in 36 h, is proposed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.