Microgrid (MG) could allow renewable and clean resources to penetrate into a controllable utility and achieve maximum utilisation of existing energy and demand-side management. This study proposes a new paradigm for distribution system operation considering MG conception. This study is focused on probabilistic analysis of optimal power dispatch considering economic aspects in MGs environment with technical constraints. In this study the economic operation of small scale energy zones is formulated and solved as an optimisation problem. A typical MG consists wind turbine (WT), photo voltaic (PV), micro turbine, fuel cell, combined heat and power and electric loads. Fluctuation behaviour of loads and generated power by WTs and PVs are caused complexity in proposed problem. Cost function includes generated powers by units, power transaction between MGs and main grid, operation and maintenance cost of resources and cost of pollutants emission. Considering MG concept in smart grids, the balance between supply-demand is secured through power exchanging between MGs and main grid, so that the value of objective function be minimised. The imperialist competitive algorithm is applied to solve proposed problem and obtained results are compared with Monte Carlo simulation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.