The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3) as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogen-activated protein kinase (MAPK) pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) resulted in decreased ATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/- murine embryonic fibroblasts (MEFs) were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin's cytotoxic effects.
BackgroundCellular stress responses trigger signaling cascades that inhibit proliferation and protein translation to help alleviate the stress or if the stress cannot be overcome induce apoptosis. In recent studies, we demonstrated the ability of lovastatin, an inhibitor of mevalonate synthesis, to induce the Integrated Stress Response as well as inhibiting epidermal growth factor receptor (EGFR) activation.Methodology/Principal FindingsIn this study, we evaluated the effects of lovastatin on the activity of the LKB1/AMPK pathway that is activated upon cellular energy shortage and can interact with the above pathways. In the squamous cell carcinoma (SCC) cell lines SCC9 and SCC25, lovastatin treatment (1–25 µM, 24 hrs) induced LKB1 and AMPK activation similar to metformin (1–10 mM, 24 hrs), a known inducer of this pathway. Lovastatin treatment impaired mitochondrial function and also decreased cellular ADP/ATP ratios, common triggers of LKB1/AMPK activation. The cytotoxic effects of lovastatin were attenuated in LKB1 null MEFs indicating a role for this pathway in regulating lovastatin-induced cytotoxicity. Of clinical relevance, lovastatin induces synergistic cytotoxicity in combination with the EGFR inhibitor gefitinib. In LKB1 deficient (A549, HeLa) and expressing (SCC9, SCC25) cell lines, metformin enhanced gefitinib cytotoxicity only in LKB1 expressing cell lines while both groups showed synergistic cytotoxic effects with lovastatin treatments. Furthermore, the combination of lovastatin with gefitinib induced a potent apoptotic response without significant induction of autophagy that is often induced during metabolic stress inhibiting cell death.Conclusion/SignificanceThus, targeting multiple metabolic stress pathways including the LKB1/AMPK pathway enhances lovastatin’s ability to synergize with gefitinib in SCC cells.
Lovastatin, a potent inhibitor of mevalonate synthesis, can readily induce apoptosis in a subset of human tumor types including head and neck squamous cell carcinomas (HNSCC). We recently identified activation of transcription factor (ATF) 4 as a lovastatin induced gene in HNSCC cells. ATF4 plays a significant role in regulating cellular responses to a wide variety of stress inducers known as the integrated stress response (ISR). These cell stresses lead to the phosphorylation of eukaryotic initiation factor (eIF) 2␣ shutting down global protein translation. However, the translation of ATF4 is enhanced. In this study, lovastatin treatment induced eIF2␣ phosphorylation and inhibited global protein translation. ATF4 expression was induced followed by increased ATF3 and CHOP expression, targets of ATF4 activity, in SCC25 HNSCC cells. In CHOP ؊/؊ murine embryonic fibroblasts (MEFs), lovastatin-induced apoptosis was attenuated indicating a role for CHOP in this response. Furthermore, the eIF2␣ kinase GCN2 mediates lovastatin induction of ATF4 and lovastatin-induced apoptosis was also attenuated in GCN2 ؊/؊ MEFs. The pro-drug version of lovastatin has potential proteasome inhibitory activity and recently a variety of well established proteasome inhibitors were shown to activate the ISR. In this study, neither the pro-drug nor the active forms of lovastatin had any significant effect on proteasome activity. Therefore, lovastatin, by targeting mevalonate synthesis, is a potent inducer of the ISR through a novel and as yet unrecognized mechanism.
Endoplasmic reticulum (ER) and mitochondria are functionally distinct with regard to membrane protein biogenesis and oxidative energy production, respectively, but cooperate in several essential cell functions, including lipid biosynthesis, cell signaling and organelle dynamics. The interorganellar cooperation requires local communication that can occur at the strategically positioned and dynamic associations between ER and mitochondria. Calcium is locally transferred from ER to mitochondria at the associations and exerts regulatory effects on numerous proteins. A common Ca2+ sensing mechanism is the EF-hand Ca2+ binding domain, many of which can be found in proteins of the mitochondria, including Miro1&2, MICU1,2&3, LETM1 and mitochondrial solute carriers. Recently, these proteins have triggered much interest and were described in reports with diverging conclusions. The present essay focuses on their shared features and established specific functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.