A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.
The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
Among several bacteria examined in this study, a hyper acidophil and thermostable Micrococcus sp.NS 211 designated as M.Amy NS 211 was selected for production of amylase using starch agar plates with following incubation at 85°C. Identification by 16SrRNA on selected bacterium disclosed the highest similarity for protean regions of this gene, 27 F and 1492R as Micrococcus sp.NS 211. Although activity of M.Amy NS 211 was established at temperatures between 70 and 110°C and pH ranges 1.2–8.0, the optimum temperature and pH was achieved at 85°C and 3.5 in sodium citrate buffer system respectively. Two‐step chromatography was performed using (CM Bio‐Gel A) and (Bio‐Gel A‐150) columns to purify 84 kDa hyper acidophil and thermostable α‐amylase. SDS‐PAGE analysis showed molecular mass and amylolytic activity as single band. Enhancement of enzyme activity was obtained in presence of 5 mM MnCl2 (298%), CaCl2 (347%), FeCl2 (211%), MgCl2 (253%), ZnCl2 (146%), NiCl (142%), NaCl (141%), Na‐sulfate (153%) while inhibition was observed with (5 mM) EDTA, PMSF (3 mM), urea (8 M), and SDS (1%) at 143, 134, 43, and 119%, respectively. M.Amy NS 211 can be applied in laundry detergents, textile, and modern relevant industrial processes at extreme temperatures and under acidic conditions.
Scientific Reports 6: Article number: 24172; published online: 13 April 2016; updated: 22 June 2016 This Article has been retracted by the Editors and Publishers of Scientific Reports. Following online criticisms of the published paper, an investigation at the journal has confirmed the manipulation and duplication of data and a level of image processing that is not compliant with the journal’s policies on image data integrity in figures 1–3, 6, 7, 10 and 12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.