In this paper we present different optimization techniques on look-up table based algorithms for double precision floating point arithmetic. Based on our analysis of different look-up table based algorithms in the literature, we re-engineer basics blocks of the algorithms (i.e. multiplier(s) and adder(s)) to facilitate area and timing benefits to achieve higher performance. We propose different look-up table optimization techniques for the algorithms. We also analyze trade-off in employing exact rounding (0.5ulp) (unit in the last place) in the double precision floating point unit. Based on performance and extensibility criteria we take algorithms proposed by Wong and Goto as a base case to validate our optimization techniques and compare the performance with other algorithms in the literature. We improve the performance (latency × area) of Wong and Goto division algorithm by 26.94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.