The maximal Shockley–Queisser efficiency limit of 41% for single-junction photovoltaics is primarily caused by heat dissipation following energetic-photon absorption. Solar-thermophotovoltaics concepts attempt to harvest this heat loss, but the required high temperatures (T>2,000 K) hinder device realization. Conversely, we have recently demonstrated how thermally enhanced photoluminescence is an efficient optical heat-pump that operates in comparably low temperatures. Here we theoretically and experimentally demonstrate such a thermally enhanced photoluminescence based solar-energy converter. Here heat is harvested by a low bandgap photoluminescent absorber that emits thermally enhanced photoluminescence towards a higher bandgap photovoltaic cell, resulting in a maximum theoretical efficiency of 70% at a temperature of 1,140 K. We experimentally demonstrate the key feature of sub-bandgap photon thermal upconversion with an efficiency of 1.4% at only 600 K. Experiments on white light excitation of a tailored Cr:Nd:Yb glass absorber suggest that conversion efficiencies as high as 48% at 1,500 K are in reach.
Line illumination geometries have advantageous properties for temporal focusing nonlinear microscopy. The characteristics of line temporal focusing (LITEF) in transparent and scattering media are studied here both experimentally and using numerical model simulations. We introduce an approximate analytical formula for the dependence of axial sectioning on the laser and microscope's parameters. Furthermore, we show that LITEF is more robust to tissue scattering than wide-field temporal focusing, and can penetrate much deeper into scattering tissue while maintaining good sectioning capabilities. Based on these observations, we propose a new design for LITEF-based tissue imaging at depths that could potentially exceed the out-of-focus physical excitation limit.
The challenge in solar energy today is not the cost of photovoltaic (PV) electricity generation, already competing with fossil fuel prices, but rather utility-scale energy storage and flexibility in supply. Low-cost thermal energy storage (TES) exists but relies on expensive heat engines. Here, we introduce the concept of luminescent solar power (LSP), where sunlight is absorbed in a photoluminescent (PL) absorber, followed by red-shifted PL emission matched to an adjacent PV cell’s band edge. This way the PV cell operates nearly as efficiently as under direct illumination but with minimal excessive heat. The PL absorber temperature rises because of thermalization, allowing it to store the excessive heat, which can later be converted into electricity. Tailored luminescent materials that support an additional 1.5 kW h PV electricity for every 1 kW h of (virtual) heat engine electricity with a dynamic shift between the two sources are experimentally demonstrated. Such an ideal hybrid system may lead to a potential reduction in the cost of electricity for a base-load solution.
Frequency up-conversion of few low-energy photons into a single high-energy photon, greatly contributes to imaging, light sources, detection and other fields of research 1-3 . However, it offers negligible efficiency when up-converting many photons. This is because coherent process are fundamentally limited due to momentum conservation requirements 4 , while in incoherent upconversion the finite intermediate states lifetime requires huge intensities. Thermodynamically, conventional incoherent up-conversion is driven by the internal energy of the incoming photons. However, a system can also drive work through change in its collective properties such as entropy. Here we experimentally demonstrate entropy driven ten-fold up-conversion from 10.6μ to 1μm at internal efficiency above 27% and total efficiency above 10%. In addition, the emitted radiance at 1μm exceeds the maximal possible Black-Body radiance of our device, indicating emitter's effective-temperature that is considerably above the bulk-temperature. This work opens the way for up-conversion of thermal-radiation, and high-temperature chemistry done at room-temperature.Traditional frequency up-conversion effects include coherent (second, third and parametric upconversion 2,5,6 and incoherent (two photon 7-9 and multi-photon absorption 10 ) processes, yet they all offer negligible efficiency when converting many (~Ten) photons into a single high-energy photon. This negligible conversion-efficiency is due to the large momentum mismatch between the pump and the produced frequencies, and the need for many photons to interact
Frequency upconversion of a few low-energy photons into a single high-energy photon contributes to imaging, light sources, and detection. However, the upconverting of many photons exhibits negligible efficiency. Upconversion through laser heating is an efficient means to generate energetic photons; yet the spectrally broad thermal emission and the challenge of operating at high temperatures limit its practicality. Heating specific modes can potentially generate narrow upconverted emission; however, so far such “hot-carriers” have been observed only in downconversion processes and as having negligible lifetime, due to fast thermalization. Here we experimentally demonstrate upconversion by excitation of a steady-state non-thermal-equilibrium population, which induces steady, narrow emission at a practical bulk temperature. Specifically, we used a 10.6 μm laser to generate 980 nm narrow emission with 4% total efficiency and upconverted radiance that far exceeds the device’s possible blackbody radiation. This opens the way for the development of new light sources with record efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.