Conspicuous male signals often play an important role in both attracting mates and deterring rivals. In territorial species with extrapair mating, female and male forays to other territories may be an important component underlying female choice and male mating success and might be influenced by male advertisement signals. Yet, whether off-territory foraying is associated with male signals is still not well understood. Here, we tested how female and male forays are associated with short-range visual and long-range acoustic signals (dawn song). We used an automated radio tracking system to follow the movements of wild great tits (Parus major) to other territories in relation to male dawn song, plumage ornaments, and extrapair paternity. We show that both sexes frequently forayed into others’ territories throughout the breeding period. Movements of both males and females were associated with male song but not with plumage ornaments. Contrary to our expectations, females stayed away from territories where males sang elaborately, whereas males were attracted to those territories. Moreover, neither female nor male forays were associated with the occurrence of extrapair offspring. Our results, thus, suggest that, although forays into other territories are associated with male dawn song, females may not be attracted and males not repelled by dawn song. This sheds a different light on the sex-specific effects of male advertisement signals, expanding the view on the selection pressures shaping such communication systems.
Differences in habitat characteristics experienced during rearing associate with variation in a range of behavioral phenotypes such as exploratory behavior, foraging behavior and food selection. The habitat-dependent selection hypothesis predicts that animals develop behavioral characteristics fitted to their rearing environment. Yet, little is known about how habitat characteristics during rearing shape how animals face winter conditions and adjust their winter foraging behavior. The aim of this study was to explore how fine-scale rearing habitat characteristics associate with exploratory behavior, food selection, and foraging performance during winter. For this, we measured habitat characteristics during the breeding season in territories of wild great tits (Parus major) and tested first-year juvenile birds that fledged from these territories for exploratory and foraging behavior at feeders during winter. We found evidence that faster explorers were raised in territories with lower quality habitat characteristics. In addition, fast exploring fledglings visited the feeders significantly more (total visits). Moreover, the rearing environment, via caterpillar availability and tree species composition, determined diet selection during winter in first-year birds. These results show support for the habitat-dependent selection hypothesis, since exploratory behavior as well as food selection during winter associate with habitat features of the rearing territories during development. This pattern can be caused either by the kinds of natural foods prevalent during rearing at these sites or because of intrinsic individual differences. Further experiments are needed to disentangle these two. Significance statement Individuals vary in how they behaviorally adapt foraging and food selection strategies to the environmental conditions. A number of studies have shown that animals develop behavioral characteristics fitted to their rearing environment. However, how habitat characteristics during rearing shape the foraging strategy that animals use to face winter conditions is still unknown. We studied these links in yearling great tits using automated feeders that recorded their visits during winter. Fledglings with a higher exploratory score were born in territories with lower quality habitat characteristics and visited the feeders more. Furthermore, we found an association between caterpillar availability and tree species composition in the rearing territory of juveniles and their subsequent food selection in winter. Our study indicates that certain environmental conditions might favor the development of particular behaviors in birds and that early nutrition could shape food choice later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.