For the past two decades, it has generally been accepted that sleep benefits motor memory consolidation processes. This notion, however, has been challenged by recent studies and thus the sleep and motor memory story is equivocal. Currently, and in contrast to the declarative memory domain, a comprehensive overview and synthesis of the effects of post-learning sleep on the behavioral and neural correlates of motor memory consolidation is not available. We therefore provide an extensive review of the literature in order to highlight that sleep-dependent motor memory consolidation depends upon multiple boundary conditions, including particular features of the motor task, the recruitment of relevant neural substrates (and the hippocampus in particular), as well as the specific architecture of the intervening sleep period (specifically, sleep spindle and slow wave activity). For our field to continue to advance, future research must consider the multifaceted nature of sleep-related motor memory consolidation.
Ignoring distracting information and updating current contents are essential components of working memory (WM). Yet, although both require controlling irrelevant information, it is unclear whether they have the same effects on recall and produce the same level of misbinding errors (incorrectly joining the features of different memoranda). Moreover, the likelihood of misbinding may be affected by the feature similarity between the items already encoded into memory and the information that has to be filtered out (ignored) or updated into memory. Here, we investigate these questions. Participants were sequentially presented with two pairs of arrows. The first pair of arrows always had to be encoded into memory, but the second pair either had to be ignored (ignore condition) or allowed to displace the previously encoded items (update condition). To investigate the effect of similarity on recall, we also varied, in a factorial manner, whether the items that had to be ignored or updated were presented in the same or different colours and/or same or different spatial locations to the original memoranda. By applying a computational model, we were able to quantify the levels of misbinding. Ignoring, but not updating, increased overall recall error as well as misbinding rates, even when accounting for the retention period. This indicates that not all manipulations of attention in WM are equal in terms of their effects on recall and misbinding. Misbinding rates in the ignore condition were affected by the colour and spatial congruence of relevant and irrelevant information to a greater extent than in the update condition. This finding suggests that attentional templates are used to evaluate relevant and irrelevant information in different ways during ignoring and updating. Together, the results suggest that differences between the two functions might occur due to higher levels of attentional compartmentalisation – or protection – during updating compared to ignoring.
Recent research has demonstrated that memory-consolidation processes can be accelerated if newly learned information is consistent with preexisting knowledge. Until now, investigations of this fast integration of new information into memory have focused on the declarative and perceptual systems. We employed a unique manipulation of a motor-sequence-learning paradigm to examine the effect of experimentally acquired memory on the learning of new motor information. Results demonstrate that new information is rapidly integrated into memory when practice occurs in a framework that is compatible with the previously acquired memory. This framework consists of the ordinal representation of the motor sequence. This enhanced integration cannot be explained by differences in the explicit awareness of the sequence and is observed only if the previously acquired motor memory was consolidated overnight. Results are consistent with the schema model of memory consolidation and offer insights into how previous motor experience can accelerate learning and consolidation processes.
While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the stimulated prefrontal cortex and learning-related changes in both activity and connectivity in fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the best of our knowledge, that brain stimulation can alter motor learning-related functional responses in the striatum and hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.