The design and evaluation of assisting technologies to support behavior change processes have become an essential topic within the field of human-computer interaction research in general and the field of immersive intervention technologies in particular. The mechanisms and success of behavior change techniques and interventions are broadly investigated in the field of psychology. However, it is not always easy to adapt these psychological findings to the context of immersive technologies. The lack of theoretical foundation also leads to a lack of explanation as to why and how immersive interventions support behavior change processes. The Behavioral Framework for immersive Technologies (BehaveFIT) addresses this lack by 1) presenting an intelligible categorization and condensation of psychological barriers and immersive features, by 2) suggesting a mapping that shows why and how immersive technologies can help to overcome barriers and finally by 3) proposing a generic prediction path that enables a structured, theory-based approach to the development and evaluation of immersive interventions. These three steps explain how BehaveFIT can be used, and include guiding questions for each step. Further, two use cases illustrate the usage of BehaveFIT. Thus, the present paper contributes to guidance for immersive intervention design and evaluation, showing that immersive interventions support behavior change processes and explain and predict 'why' and 'how' immersive interventions can bridge the intention-behavior-gap.
Obesity is a serious disease that can affect both physical and psychological well-being. Due to weight stigmatization, many affected individuals suffer from body image disturbances whereby they perceive their body in a distorted way, evaluate it negatively, or neglect it. Beyond established interventions such as mirror exposure, recent advancements aim to complement body image treatments by the embodiment of visually altered virtual bodies in virtual reality (VR). We present a high-fidelity prototype of an advanced VR system that allows users to embody a rapidly generated personalized, photorealistic avatar and to realistically modulate its body weight in real-time within a carefully designed virtual environment. In a formative multi-method approach, a total of 12 participants rated the general user experience (UX) of our system during body scan and VR experience using semi-structured qualitative interviews and multiple quantitative UX measures. Using body weight modification tasks, we further compared three different interaction methods for real-time body weight modification and measured our system’s impact on the body image relevant measures body awareness and body weight perception. From the feedback received, demonstrating an already solid UX of our overall system and providing constructive input for further improvement, we derived a set of design guidelines to guide future development and evaluation processes of systems supporting body image interventions.
Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.