Background The Chemistry Development Kit (CDK) is a widely used open source cheminformatics toolkit, providing data structures to represent chemical concepts along with methods to manipulate such structures and perform computations on them. The library implements a wide variety of cheminformatics algorithms ranging from chemical structure canonicalization to molecular descriptor calculations and pharmacophore perception. It is used in drug discovery, metabolomics, and toxicology. Over the last 10 years, the code base has grown significantly, however, resulting in many complex interdependencies among components and poor performance of many algorithms.Results We report improvements to the CDK v2.0 since the v1.2 release series, specifically addressing the increased functional complexity and poor performance. We first summarize the addition of new functionality, such atom typing and molecular formula handling, and improvement to existing functionality that has led to significantly better performance for substructure searching, molecular fingerprints, and rendering of molecules. Second, we outline how the CDK has evolved with respect to quality control and the approaches we have adopted to ensure stability, including a code review mechanism.ConclusionsThis paper highlights our continued efforts to provide a community driven, open source cheminformatics library, and shows that such collaborative projects can thrive over extended periods of time, resulting in a high-quality and performant library. By taking advantage of community support and contributions, we show that an open source cheminformatics project can act as a peer reviewed publishing platform for scientific computing software.Graphical abstractCDK 2.0 provides new features and improved performance Electronic supplementary materialThe online version of this article (doi:10.1186/s13321-017-0220-4) contains supplementary material, which is available to authorized users.
Risk assessment for most human health effects is based on the threshold of a toxicological effect, usually derived from animal experiments. The Threshold of Toxicological Concern (TTC) is a concept that refers to the establishment of a level of exposure for all chemicals below which there would be no appreciable risk to human health. When carefully applied, the TTC concept can provide a means of waiving testing based on knowledge of exposure limits. Two main approaches exist; the first of these is a General Threshold of Toxicological Concern; the second approach is a TTC in relation to structural information and/or toxicological data of chemicals. The structural scheme most routinely used is that of Cramer and co-workers from 1978. Recently this scheme was encoded into a software program called Toxtree, specifically commissioned by the European Chemicals Bureau (ECB). Here we evaluate two published datasets using Toxtree to demonstrate its concordance and highlight potential software modifications. The results were promising with an overall good concordance between the reported classifications and those generated by Toxtree. Further evaluation of these results highlighted a number of inconsistencies which were examined in turn and rationalised as far as possible. Improvements for Toxtree were proposed where appropriate. Notable of these is a necessity to update the lists of common food components and normal body constituents as these accounted for the majority of false classifications observed. Overall Toxtree was found to be a useful tool in facilitating the systematic evaluation of compounds through the Cramer scheme.
Chemogenomics data generally refers to the activity data of chemical compounds on an array of protein targets and represents an important source of information for building in silico target prediction models. The increasing volume of chemogenomics data offers exciting opportunities to build models based on Big Data. Preparing a high quality data set is a vital step in realizing this goal and this work aims to compile such a comprehensive chemogenomics dataset. This dataset comprises over 70 million SAR data points from publicly available databases (PubChem and ChEMBL) including structure, target information and activity annotations. Our aspiration is to create a useful chemogenomics resource reflecting industry-scale data not only for building predictive models of in silico polypharmacology and off-target effects but also for the validation of cheminformatics approaches in general.Electronic supplementary materialThe online version of this article (doi:10.1186/s13321-017-0203-5) contains supplementary material, which is available to authorized users.
BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP).
OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.