Active plasmonics is a burgeoning and challenging subfield of plasmonics. It exploits the active control of surface plasmon resonance. In this review, a first-ever in-depth description of the theoretical relationship between surface plasmon resonance and its affecting factors, which forms the basis for active plasmon control, will be presented. Three categories of active plasmonic structures, consisting of plasmonic structures in tunable dielectric surroundings, plasmonic structures with tunable gap distances, and self-tunable plasmonic structures, will be proposed in terms of the modulation mechanism. The recent advances and current challenges for these three categories of active plasmonic structures will be discussed in detail. The flourishing development of active plasmonic structures opens access to new application fields. A significant part of this review will be devoted to the applications of active plasmonic structures in plasmonic sensing, tunable surface-enhanced Raman scattering, active plasmonic components, and electrochromic smart windows. This review will be concluded with a section on the future challenges and prospects for active plasmonics.
(Gold nanorod core)/(polyaniline shell) nanostructures are prepared for functioning as active plasmonic switches. The single core/shell nanostructures exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. The nanostructures are also deposited on substrates to form macroscale monolayers with remarkable ensemble plasmonic switching performances.
High-performance electrochemical plasmonic switching is realized on both single-particle and ensemble levels by coating polyaniline on colloidal gold nanocrystals through surfactant-assisted oxidative polymerization. Under small applied potentials, the core@shell nanostructures exhibit reversible plasmon shifts as large as 150 nm, a switching time of less than 10 ms, and a high switching stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.